Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare

计算机科学 人工智能 互联网 医疗保健 智能决策支持系统 人工智能应用 深度学习 人机交互 万维网 经济 经济增长
作者
Pandiaraj Manickam,Siva Ananth Mariappan,Sindhu Monica Murugesan,Shekhar Hansda,Ajeet Kaushik,Ravikumar B. Shinde,S. P. Thipperudraswamy
出处
期刊:Biosensors [MDPI AG]
卷期号:12 (8): 562-562 被引量:236
标识
DOI:10.3390/bios12080562
摘要

Artificial intelligence (AI) is a modern approach based on computer science that develops programs and algorithms to make devices intelligent and efficient for performing tasks that usually require skilled human intelligence. AI involves various subsets, including machine learning (ML), deep learning (DL), conventional neural networks, fuzzy logic, and speech recognition, with unique capabilities and functionalities that can improve the performances of modern medical sciences. Such intelligent systems simplify human intervention in clinical diagnosis, medical imaging, and decision-making ability. In the same era, the Internet of Medical Things (IoMT) emerges as a next-generation bio-analytical tool that combines network-linked biomedical devices with a software application for advancing human health. In this review, we discuss the importance of AI in improving the capabilities of IoMT and point-of-care (POC) devices used in advanced healthcare sectors such as cardiac measurement, cancer diagnosis, and diabetes management. The role of AI in supporting advanced robotic surgeries developed for advanced biomedical applications is also discussed in this article. The position and importance of AI in improving the functionality, detection accuracy, decision-making ability of IoMT devices, and evaluation of associated risks assessment is discussed carefully and critically in this review. This review also encompasses the technological and engineering challenges and prospects for AI-based cloud-integrated personalized IoMT devices for designing efficient POC biomedical systems suitable for next-generation intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shan完成签到,获得积分10
2秒前
stories完成签到,获得积分20
2秒前
王英俊完成签到,获得积分10
3秒前
虚幻伯云发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
赘婿应助KhalilHao采纳,获得10
5秒前
江峰发布了新的文献求助10
6秒前
7秒前
Natasha发布了新的文献求助10
8秒前
8秒前
黄大师发布了新的文献求助10
8秒前
wrb发布了新的文献求助10
9秒前
虚幻伯云完成签到,获得积分20
10秒前
11秒前
王璐完成签到,获得积分10
11秒前
思源应助随便采纳,获得10
11秒前
12秒前
12秒前
咸鱼一号完成签到,获得积分10
12秒前
12秒前
韭菜盒子发布了新的文献求助10
12秒前
12秒前
完美的以寒完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
SGOM发布了新的文献求助10
16秒前
黄大师完成签到,获得积分10
16秒前
小鱼发布了新的文献求助10
16秒前
贰陆发布了新的文献求助10
17秒前
KhalilHao发布了新的文献求助10
17秒前
秀丽钢笔发布了新的文献求助10
17秒前
luna发布了新的文献求助400
18秒前
英姑应助韭菜盒子采纳,获得10
18秒前
Tieaciaa完成签到,获得积分10
18秒前
zhang1完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721