已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online public opinion prediction based on a novel seasonal grey decomposition and ensemble model

计算机科学 舆论 分解 情绪分析 人工智能 数据挖掘 机器学习 法学 政治学 生态学 生物 政治
作者
Qi Su,Shuli Yan,Lifeng Wu,Xiangyan Zeng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118341-118341 被引量:13
标识
DOI:10.1016/j.eswa.2022.118341
摘要

Due to the influence of netizens’ behaviors, social activities, media and other factors, the trend of online public opinion shows the characteristics of nonlinear and seasonal fluctuation, but most researchers ignored it. In order to accurately predict the hot-degree of online public opinion, this paper proposes an improved seasonal grey decomposition and ensemble model. The STL decomposition algorithm is used to decompose original public opinion data. And the grey modified exponential model is proposed based on the grey difference information. Then the dynamic seasonal factors and Bernoulli equation are introduced to establish the seasonal modified exponential grey Bernoulli model. The SMEGBM model is used to predict the seasonal sequence and trend sequence, and the ARIMA model is used to predict the remainder sequence. In order to validate the prediction effect of the new model, the hot-degree predication of “Lin Shengbin” and “Tangshan beating” online events are implemented for empirical analysis. Compared with other models, the model proposed in this paper shows higher prediction accuracy. The results show that it is necessary to take the periodicity into account in the establishment of network public opinion model. And the hybrid model. can provide theoretical supports for relevant departments to monitor and give early warning of sudden online public opinion events. • A novel hybrid grey seasonal model is proposed to predict online public opinion. • Based on the grey differential information principle, MEGM(1,1) model is proposed. • The dynamic seasonal factors that extracted from seasonal sequence are proposed. • The Bernoulli equation is introduced to the establishment of SMEGBM model. • Comparative studies illustrate the effectiveness of the SMEGBM-ARIMA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rpe完成签到,获得积分10
3秒前
4秒前
Res_M完成签到 ,获得积分10
6秒前
跑向wb完成签到,获得积分10
6秒前
12秒前
小材不菜发布了新的文献求助20
12秒前
有趣的银完成签到,获得积分10
13秒前
Grayball应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
青木香应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
开心岩应助科研通管家采纳,获得10
14秒前
青木香应助科研通管家采纳,获得10
14秒前
Grayball应助科研通管家采纳,获得10
14秒前
Grayball应助科研通管家采纳,获得10
15秒前
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
17秒前
小刘哥儿完成签到,获得积分10
19秒前
邓布利多完成签到,获得积分10
20秒前
斯文败类应助sange采纳,获得10
23秒前
chengymao完成签到,获得积分10
27秒前
Louise发布了新的文献求助10
27秒前
顺利的白山完成签到 ,获得积分10
33秒前
weilei完成签到,获得积分10
36秒前
花蝴蝶完成签到 ,获得积分10
37秒前
39秒前
健康的大船完成签到 ,获得积分10
44秒前
kk完成签到 ,获得积分10
44秒前
大模型应助小王采纳,获得10
45秒前
sange发布了新的文献求助10
45秒前
45秒前
47秒前
小材不菜完成签到,获得积分10
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671144
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778242
捐赠科研通 2938305
什么是DOI,文献DOI怎么找? 1609831
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962