Automated Pruning Decisions in Dormant Canopies using Instance Segmentation

修剪 人工智能 计算机科学 深度学习 分割 精确性和召回率 人工神经网络 过程(计算) 机器视觉 模式识别(心理学) 图像分割 机器学习 计算机视觉 农学 生物 操作系统
作者
Daniel Borrenpohl,Manoj Karkee
标识
DOI:10.13031/aim.202200952
摘要

Abstract. Pruning is an operation vital to orchard health and yield. However, pruning is also a laborious process requiring substantial human resources. As such, interest in automated pruning is growing. Automated pruning systems must possess robust machine vision capable of making proper pruning decisions. Deep neural networks are powerful tools for machine vision, and we demonstrate how deep neural networks can be used in an automated pruning system. A pruning rule in the UFO cherry architecture is to remove vigorous (or large diameter) leaders. Stereo images of UFO cherry trees were collected using active and natural lighting. Images were annotated for two classes of objects—trunks and leaders. Two instance segmentation networks (Mask R-CNN) were trained to detect leaders—one using active lighting images and one using natural lighting images. Deep stereo matching enabled generation of synthetic images to increase the size of our training dataset, and large learning rates were employed to accelerate learning (called super-convergence training). Predictions from the active and natural lighting Mask R-CNNs were compared to ground truth annotations for mask IoU, precision, recall, and probability of correctly identifying the largest leader. The active lighting Mask R-CNN demonstrated higher mask IoU, precision, recall, and probability of selecting the largest leader than the natural lighting Mask R-CNN. Overall, the active lighting Mask R-CNN correctly identified the largest leader in 94% of test images. Our results indicate instance segmentation is a robust approach to making automated pruning decisions in the UFO cherry architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunrise完成签到,获得积分10
刚刚
vv完成签到 ,获得积分10
1秒前
Someone应助wmmm采纳,获得10
4秒前
5秒前
6秒前
敲一下叮发布了新的文献求助30
6秒前
6秒前
赘婿应助感动世倌采纳,获得10
7秒前
旧梦如烟完成签到,获得积分20
9秒前
多情怜蕾发布了新的文献求助10
10秒前
sam完成签到,获得积分10
11秒前
彭于晏应助SDNUDRUG采纳,获得10
12秒前
shitou完成签到,获得积分10
15秒前
cynical发布了新的文献求助10
15秒前
俏皮秋双发布了新的文献求助10
16秒前
wmmm完成签到,获得积分10
17秒前
Hello应助清澄采纳,获得10
18秒前
胡蝶完成签到 ,获得积分10
19秒前
打打应助疯狂肉夹馍采纳,获得10
21秒前
22秒前
23秒前
所所应助俏皮秋双采纳,获得10
24秒前
亦久完成签到 ,获得积分10
25秒前
田様应助多情怜蕾采纳,获得10
25秒前
curry发布了新的文献求助10
26秒前
29秒前
感动世倌发布了新的文献求助10
29秒前
muum发布了新的文献求助30
30秒前
31秒前
Shantx完成签到,获得积分10
32秒前
32秒前
33秒前
酷波er应助symbol1采纳,获得10
34秒前
35秒前
35秒前
烟花应助nadeem采纳,获得10
38秒前
科研螺丝发布了新的文献求助20
42秒前
42秒前
田様应助科研小白采纳,获得10
44秒前
muum完成签到,获得积分20
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153347
求助须知:如何正确求助?哪些是违规求助? 2804555
关于积分的说明 7860074
捐赠科研通 2462478
什么是DOI,文献DOI怎么找? 1310769
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794