Automated Pruning Decisions in Dormant Canopies using Instance Segmentation

修剪 人工智能 计算机科学 深度学习 分割 精确性和召回率 人工神经网络 过程(计算) 机器视觉 模式识别(心理学) 图像分割 机器学习 计算机视觉 农学 生物 操作系统
作者
Daniel Borrenpohl,Manoj Karkee
标识
DOI:10.13031/aim.202200952
摘要

Abstract. Pruning is an operation vital to orchard health and yield. However, pruning is also a laborious process requiring substantial human resources. As such, interest in automated pruning is growing. Automated pruning systems must possess robust machine vision capable of making proper pruning decisions. Deep neural networks are powerful tools for machine vision, and we demonstrate how deep neural networks can be used in an automated pruning system. A pruning rule in the UFO cherry architecture is to remove vigorous (or large diameter) leaders. Stereo images of UFO cherry trees were collected using active and natural lighting. Images were annotated for two classes of objects—trunks and leaders. Two instance segmentation networks (Mask R-CNN) were trained to detect leaders—one using active lighting images and one using natural lighting images. Deep stereo matching enabled generation of synthetic images to increase the size of our training dataset, and large learning rates were employed to accelerate learning (called super-convergence training). Predictions from the active and natural lighting Mask R-CNNs were compared to ground truth annotations for mask IoU, precision, recall, and probability of correctly identifying the largest leader. The active lighting Mask R-CNN demonstrated higher mask IoU, precision, recall, and probability of selecting the largest leader than the natural lighting Mask R-CNN. Overall, the active lighting Mask R-CNN correctly identified the largest leader in 94% of test images. Our results indicate instance segmentation is a robust approach to making automated pruning decisions in the UFO cherry architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kytyx发布了新的文献求助10
刚刚
1秒前
善学以致用应助andy采纳,获得10
1秒前
shepherd完成签到,获得积分10
1秒前
2秒前
slidy发布了新的文献求助10
2秒前
3秒前
wang完成签到,获得积分20
3秒前
Jodie发布了新的文献求助10
3秒前
细腻铃铛完成签到,获得积分10
4秒前
5秒前
6秒前
在水一方应助满意的天采纳,获得10
6秒前
李健应助清秀送终采纳,获得10
7秒前
自由的代容完成签到,获得积分10
7秒前
Jodie完成签到,获得积分10
8秒前
科研通AI5应助郭振鹏采纳,获得10
9秒前
Lucas应助方墨采纳,获得10
9秒前
10秒前
没入平凡发布了新的文献求助10
11秒前
顾长生发布了新的文献求助10
11秒前
Qbzzzh完成签到 ,获得积分10
12秒前
吴晨曦完成签到 ,获得积分10
13秒前
13秒前
13秒前
16秒前
16秒前
16秒前
朴实起眸发布了新的文献求助10
19秒前
要减肥南霜完成签到 ,获得积分10
19秒前
舒心妙菱完成签到,获得积分10
20秒前
20秒前
华仔应助孙成成采纳,获得10
20秒前
ding应助heartbeat采纳,获得10
21秒前
22秒前
CS发布了新的文献求助10
22秒前
22秒前
科研通AI5应助寄书长不达采纳,获得10
24秒前
24秒前
25秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724321
求助须知:如何正确求助?哪些是违规求助? 3269814
关于积分的说明 9962200
捐赠科研通 2984300
什么是DOI,文献DOI怎么找? 1637329
邀请新用户注册赠送积分活动 777453
科研通“疑难数据库(出版商)”最低求助积分说明 747035