Reinforcement Learning Based Diagnosis and Prediction for COVID-19 by Optimizing a Mixed Cost Function From CT Images

计算机科学 2019年冠状病毒病(COVID-19) 人工智能 强化学习 机器学习 功能(生物学) 集合(抽象数据类型) 数据集 数据挖掘 模式识别(心理学) 疾病 医学 进化生物学 生物 病理 程序设计语言 传染病(医学专业)
作者
Siying Chen,Minghui Liu,Deng Pan,Jiali Deng,Yi Yuan,Xuan Cheng,Tianshu Xie,Libo Xie,Wei Zhang,Haigang Gong,Xiaomin Wang,Lifeng Xu,Hong Pu,Ming Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5344-5354 被引量:16
标识
DOI:10.1109/jbhi.2022.3197666
摘要

A novel coronavirus disease (COVID-19) is a pandemic disease has caused 4 million deaths and more than 200 million infections worldwide (as of August 4, 2021). Rapid and accurate diagnosis of COVID-19 infection is critical to controlling the spread of the epidemic. In order to quickly and efficiently detect COVID-19 and reduce the threat of COVID-19 to human survival, we have firstly proposed a detection framework based on reinforcement learning for COVID-19 diagnosis, which constructs a mixed loss function that can integrate the advantages of multiple loss functions. This paper uses the accuracy of the validation set as the reward value, and obtains the initial model for the next epoch by searching the model corresponding to the maximum reward value in each epoch. We also have proposed a prediction framework that integrates multiple detection frameworks using parameter sharing to predict the progression of patients' disease without additional training. This paper also constructed a higher-quality version of the CT image dataset containing 247 cases screened by professional physicians, and obtained more excellent results on this dataset. Meanwhile, we used the other two COVID-19 datasets as external verifications, and still achieved a high accuracy rate without additional training. Finally, the experimental results show that our classification accuracy can reach 98.31%, and the precision, sensitivity, specificity, and AUC (Area Under Curve) are 98.82%, 97.99%, 98.67%, and 0.989, respectively. The accuracy of external verification can reach 93.34% and 91.05%. What's more, the accuracy of our prediction framework is 91.54%. A large number of experiments demonstrate that our proposed method is effective and robust for COVID-19 detection and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的未来完成签到,获得积分10
刚刚
胖心怡完成签到,获得积分10
刚刚
赵雷发布了新的文献求助10
1秒前
啦啦啦发布了新的文献求助10
1秒前
1秒前
wyfyq完成签到,获得积分10
2秒前
Orange应助冷艳水壶采纳,获得10
2秒前
熬熬就出头了完成签到,获得积分10
2秒前
李健的小迷弟应助Una采纳,获得10
2秒前
袁诗槐完成签到,获得积分10
2秒前
huo发布了新的文献求助10
2秒前
发发发发布了新的文献求助10
2秒前
YMP发布了新的文献求助10
3秒前
睡不醒完成签到,获得积分10
3秒前
westbobo发布了新的文献求助10
3秒前
Fluoxetine完成签到,获得积分10
3秒前
景然完成签到,获得积分10
3秒前
LJX完成签到,获得积分10
3秒前
情怀应助yu_Panda采纳,获得10
3秒前
乔磊给乔磊的求助进行了留言
4秒前
yizili发布了新的文献求助10
4秒前
4秒前
chen完成签到,获得积分10
4秒前
FashionBoy应助慈祥的盼波采纳,获得10
4秒前
502s完成签到,获得积分10
4秒前
4秒前
4秒前
炙热灵完成签到,获得积分20
5秒前
orixero应助果小镁采纳,获得10
5秒前
落寞寒荷应助MoO采纳,获得10
5秒前
由由完成签到,获得积分10
6秒前
momo完成签到,获得积分10
6秒前
传奇3应助林林林林采纳,获得10
6秒前
6秒前
Keming完成签到,获得积分10
6秒前
6秒前
7秒前
追寻白亦完成签到,获得积分10
7秒前
7秒前
shooin完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516843
求助须知:如何正确求助?哪些是违规求助? 3099028
关于积分的说明 9242843
捐赠科研通 2794309
什么是DOI,文献DOI怎么找? 1533384
邀请新用户注册赠送积分活动 712805
科研通“疑难数据库(出版商)”最低求助积分说明 707431