Combining Multi-objective Evolutionary Approach and Machine Learning to Optimize PCI Configuration in Large-scale LTE Networks

传统PCI 计算机科学 渡线 人口 进化算法 最优化问题 数学优化 人工智能 算法 数学 心理学 精神科 社会学 人口学 心肌梗塞
作者
Liuling Chen,Peng Cheng,Yuanting Wang,Yinghong Wen
标识
DOI:10.1109/iccet55794.2022.00014
摘要

Wireless interference seriously affects the quality of service in mobile communication networks, and PCI planning and optimization is an effective method to reduce interference in 4G and 5G networks. Most of the existing PCI configuration optimization methods focus on solving basic problems, such as PCI collision, PCI confusion and PCI mod 3 interference, which can not meet the complex requirements of actual LTE network optimization. In this paper, we establish six objectives and six constraints based on the PCI optimization requirements of large-scale real LTE networks, and propose a decomposition-based multi-objective evolutionary algorithm combining community detection and reinforcement learning mechanism improvement. Specifically, community detection is used to improve the selection method of crossover segments and mutation points in the evolutionary algorithm so that good sub-region patterns can be inherited to the next generation, and Q-learning method is took to adaptively adjust the crossover and mutation probabilities according to the evolutionary iteration number, population diversity and average fitness to improve the diversity of the population. The PCI optimization results for 1231 optimized cells and 5169 associated cells in a city of China show that our algorithm has improvement in all six objectives with an average 1.38% increase in the optimization rate of the original solution compared to the baseline algorithm, and 21 % reduction in runtime for 1000 generations. Therefore, the proposed algorithm is an effective method to improve PCI configuration and reduce network interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lane发布了新的文献求助10
1秒前
li完成签到,获得积分10
2秒前
2秒前
娜娜完成签到 ,获得积分10
3秒前
3秒前
4秒前
斯文发糕完成签到,获得积分10
4秒前
梓泽丘墟完成签到,获得积分10
6秒前
星星完成签到 ,获得积分10
6秒前
aaaaa发布了新的文献求助10
7秒前
猫又完成签到,获得积分10
8秒前
舒适小熊猫关注了科研通微信公众号
9秒前
sx完成签到 ,获得积分10
9秒前
申思发布了新的文献求助10
11秒前
aaaaa完成签到,获得积分10
12秒前
啊啊啊完成签到,获得积分10
13秒前
brave heart完成签到,获得积分10
14秒前
积极平蓝完成签到 ,获得积分10
20秒前
sunrise_99完成签到,获得积分10
22秒前
22秒前
23秒前
开朗的翠彤完成签到,获得积分10
24秒前
麻薯头头发布了新的文献求助10
27秒前
李青荣发布了新的文献求助10
28秒前
香蕉觅云应助tangyuan采纳,获得10
30秒前
小二郎应助开朗的翠彤采纳,获得10
30秒前
32秒前
33秒前
34秒前
慕青应助李青荣采纳,获得10
37秒前
qqesk发布了新的文献求助10
38秒前
阿盛完成签到,获得积分10
38秒前
41秒前
zouzhao关注了科研通微信公众号
43秒前
xgx984完成签到,获得积分10
45秒前
研友_VZG7GZ应助cccyc采纳,获得10
47秒前
张萌完成签到 ,获得积分10
51秒前
积极的尔白完成签到 ,获得积分10
53秒前
科研通AI2S应助加菲丰丰采纳,获得10
53秒前
54秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043