已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data

双相情感障碍 精神分裂症(面向对象编程) 支持向量机 人工智能 医学 机器学习 精神科 计算机科学 心情
作者
Qingxia Yang,Yi Li,Bo Li,Yaguo Gong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105956-105956 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.105956
摘要

Two common psychiatric disorders, schizophrenia (SCZ) and bipolar disorder (BP), confer lifelong disability and collectively affect 2% of the world population. Because the diagnosis of psychiatry is based only on symptoms, developing more effective methods for the diagnosis of psychiatric disorders is a major international public health priority. Furthermore, SCZ and BP overlap considerably in terms of symptoms and risk genes. Therefore, the clarity of the underlying etiology and pathology remains lacking for these two disorders. Although many studies have been conducted, a classification model with higher accuracy and consistency was found to still be necessary for accurate diagnoses of SCZ and BP. In this study, a comprehensive dataset was combined from five independent transcriptomic studies. This dataset comprised 120 patients with SCZ, 101 patients with BP, and 149 healthy subjects. The partial least squares discriminant analysis (PLS-DA) method was applied to identify the gene signature among multiple groups, and 341 differentially expressed genes (DEGs) were identified. Then, the disease relevance of these DEGs was systematically performed, including (α) the great disease relevance of the identified signature, (β) the hub genes of the protein-protein interaction network playing a key role in psychiatric disorders, and (γ) gene ontology terms and enriched pathways playing a key role in psychiatric disorders. Finally, a popular multi-class classifier, support vector machine (SVM), was applied to construct a novel multi-class classification model using the identified signature for SCZ and BP. Using the independent test sets, the classification capacity of this multi-class model was assessed, which showed this model had a strong classification ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx发布了新的文献求助10
刚刚
孤独乐瑶完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助落伍少年采纳,获得10
2秒前
呼延水云完成签到,获得积分10
2秒前
杳鸢应助LXX-k采纳,获得20
3秒前
Lucas应助李善聪采纳,获得10
3秒前
7秒前
比巴卜完成签到 ,获得积分10
7秒前
pp发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
Xtay完成签到 ,获得积分10
11秒前
这个东发布了新的文献求助30
12秒前
13秒前
在水一方应助闪闪不言采纳,获得10
13秒前
李善聪发布了新的文献求助10
14秒前
栗子发布了新的文献求助10
14秒前
TJway发布了新的文献求助10
16秒前
务实一斩发布了新的文献求助10
16秒前
共享精神应助dan1029采纳,获得10
16秒前
善学以致用应助吴所畏惧采纳,获得10
17秒前
瓶邪发布了新的文献求助10
17秒前
善学以致用应助干净听双采纳,获得10
17秒前
17秒前
小蜜蜂发布了新的文献求助10
18秒前
AJ完成签到 ,获得积分10
19秒前
20秒前
丑丑阿发布了新的文献求助10
20秒前
21秒前
tttt完成签到 ,获得积分10
22秒前
好运连连完成签到 ,获得积分10
23秒前
小马甲应助wyx采纳,获得10
23秒前
小野发布了新的文献求助10
24秒前
火星上的菲鹰应助TJway采纳,获得10
25秒前
Lucas应助TJway采纳,获得10
25秒前
可爱的静发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538812
求助须知:如何正确求助?哪些是违规求助? 3116497
关于积分的说明 9325545
捐赠科研通 2814404
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136