已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models

激光雷达 多光谱图像 随机森林 遥感 均方误差 合成孔径雷达 支持向量机 环境科学 计算机科学 数学 人工智能 地理 统计
作者
Rajit Gupta,Laxmi Kant Sharma
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:27: 100817-100817 被引量:20
标识
DOI:10.1016/j.rsase.2022.100817
摘要

Spatial mapping of forests canopy height (Hcanopy) provides an opportunity to assess above-ground biomass, net primary productivity, carbon dioxide (CO2) sequestration, biodiversity conservation and forest fire risks. This study incorporated a continuous coverage of multi-spectral optical and synthetic aperture radar (SAR) along with sparsely global ecosystem dynamics investigation (GEDI) spaceborne Light Detection and Ranging (LiDAR) data in the machine learning (ML) models for mapping Hcanopy in the mixed tropical forests of Shoolpaneshwar wildlife sanctuary (SWLS), Gujarat, India. We trained seven ML models, including quantile random forest (QRF), support vector machine (SVM), Bayesian regularization for feed-forward neural networks (BRNN), conditional inference random forest (Cforest), Extreme gradient boosting (Xgbtree), multivariate adaptive regression splines (MARS), and k-nearest neighbors (KNN) using GEDI_02A extracted Hcanopy as training data. We used predictors which were extracted from LiDAR (GEDI metrics), multispectral optical (Landsat -8, Sentinel-2), and SAR (ALOS-2/PALSAR-2, Sentinel-1). A 10-fold cross-validation (CV) resampling was used to avoid overfitting or underfitting. The comparison of the models performances shows that the BRNN model has the highest satisfactory accuracy metrics, such as root mean square error (RMSE) of 4.686 m, R-squared (R2) of 0.49 and mean absolute error (MAE) of 3.66 m. Low training samples of tall canopies (>25 m), presence of mixed vegetation, geometric and structural variability and sloppy terrain of SWLS possibly restricted models from performing well. Field validation shows an R2 of 0.55, satisfactory for mixed tropical forests using spaceborne LiDAR. The present work provides insights into using spaceborne LiDAR GEDI data with optical and SAR data for Hcanopy mapping through ML models, which help to manage SWLS and further implications of forest Hcanopy mapping over large spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剑八发布了新的文献求助30
1秒前
chunyan_sysu发布了新的文献求助10
3秒前
5秒前
汉堡包应助帅气绮露采纳,获得10
5秒前
9秒前
yeurekar发布了新的文献求助10
9秒前
剑八完成签到,获得积分10
10秒前
12秒前
rht发布了新的文献求助10
14秒前
14秒前
jiangfuuuu完成签到 ,获得积分10
15秒前
15秒前
俊逸吐司发布了新的文献求助10
15秒前
帅气绮露发布了新的文献求助10
16秒前
18秒前
19秒前
20秒前
Lucas应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
独特觅翠应助科研通管家采纳,获得10
23秒前
24秒前
大泡泡发布了新的文献求助10
24秒前
25秒前
28秒前
29秒前
安详书萱发布了新的文献求助10
30秒前
天元神尊完成签到 ,获得积分10
30秒前
cc发布了新的文献求助10
31秒前
打工不可能完成签到,获得积分10
32秒前
34秒前
coco发布了新的文献求助10
34秒前
领导范儿应助虚幻的水之采纳,获得10
37秒前
无花果应助oydent采纳,获得20
37秒前
大泡泡完成签到,获得积分10
37秒前
小小浩浩发布了新的文献求助10
38秒前
思源应助zqy采纳,获得10
39秒前
在水一方应助会会小小胖采纳,获得10
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229535
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8197956
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374419
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749