Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models

激光雷达 多光谱图像 随机森林 遥感 均方误差 合成孔径雷达 支持向量机 环境科学 计算机科学 数学 人工智能 地理 统计
作者
Rajit Gupta,Laxmi Kant Sharma
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:27: 100817-100817 被引量:31
标识
DOI:10.1016/j.rsase.2022.100817
摘要

Spatial mapping of forests canopy height (Hcanopy) provides an opportunity to assess above-ground biomass, net primary productivity, carbon dioxide (CO2) sequestration, biodiversity conservation and forest fire risks. This study incorporated a continuous coverage of multi-spectral optical and synthetic aperture radar (SAR) along with sparsely global ecosystem dynamics investigation (GEDI) spaceborne Light Detection and Ranging (LiDAR) data in the machine learning (ML) models for mapping Hcanopy in the mixed tropical forests of Shoolpaneshwar wildlife sanctuary (SWLS), Gujarat, India. We trained seven ML models, including quantile random forest (QRF), support vector machine (SVM), Bayesian regularization for feed-forward neural networks (BRNN), conditional inference random forest (Cforest), Extreme gradient boosting (Xgbtree), multivariate adaptive regression splines (MARS), and k-nearest neighbors (KNN) using GEDI_02A extracted Hcanopy as training data. We used predictors which were extracted from LiDAR (GEDI metrics), multispectral optical (Landsat -8, Sentinel-2), and SAR (ALOS-2/PALSAR-2, Sentinel-1). A 10-fold cross-validation (CV) resampling was used to avoid overfitting or underfitting. The comparison of the models performances shows that the BRNN model has the highest satisfactory accuracy metrics, such as root mean square error (RMSE) of 4.686 m, R-squared (R2) of 0.49 and mean absolute error (MAE) of 3.66 m. Low training samples of tall canopies (>25 m), presence of mixed vegetation, geometric and structural variability and sloppy terrain of SWLS possibly restricted models from performing well. Field validation shows an R2 of 0.55, satisfactory for mixed tropical forests using spaceborne LiDAR. The present work provides insights into using spaceborne LiDAR GEDI data with optical and SAR data for Hcanopy mapping through ML models, which help to manage SWLS and further implications of forest Hcanopy mapping over large spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uni应助火星上的从筠采纳,获得30
刚刚
清脆依白发布了新的文献求助10
1秒前
1秒前
默mo完成签到,获得积分10
1秒前
天草诺完成签到,获得积分10
1秒前
2秒前
mmmewo发布了新的文献求助10
2秒前
赘婿应助Lily采纳,获得10
3秒前
我是老大应助莽哥采纳,获得10
3秒前
CipherSage应助秋琼采纳,获得10
3秒前
想读博的小羊完成签到,获得积分10
3秒前
4秒前
大力夜雪完成签到,获得积分10
4秒前
缥缈哈密瓜完成签到,获得积分10
5秒前
Yiii发布了新的文献求助10
6秒前
6秒前
我是老大应助大迷糊采纳,获得10
6秒前
吕培森发布了新的文献求助10
6秒前
lalala应助清脆依白采纳,获得10
6秒前
6秒前
Akim应助幸福的丑采纳,获得30
7秒前
shjcold完成签到,获得积分10
7秒前
rover完成签到 ,获得积分10
7秒前
9秒前
婉孝发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
上官小怡发布了新的文献求助10
11秒前
Anima应助哔哩哔哩采纳,获得10
11秒前
11秒前
澎鱼盐发布了新的文献求助10
11秒前
12秒前
以水为师完成签到 ,获得积分10
12秒前
lyy给lyy的求助进行了留言
12秒前
我不理解完成签到,获得积分10
12秒前
FashionBoy应助帆布鞋采纳,获得10
13秒前
希望天下0贩的0应助玄音采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369