哈夫尼亚
桥接(联网)
人工神经网络
四方晶系
相变
单斜晶系
凝聚态物理
谐波
材料科学
量子相变
统计物理学
相(物质)
物理
量子力学
计算机科学
人工智能
复合材料
计算机网络
立方氧化锆
陶瓷
分子
作者
Sebastian Bichelmaier,Jesús Carrete,Ralf Wanzenböck,Florian Buchner,Georg K. H. Madsen
出处
期刊:Physical review
[American Physical Society]
日期:2023-05-17
卷期号:107 (18)
被引量:4
标识
DOI:10.1103/physrevb.107.184111
摘要
Machine learning methods, and in particular neural-network force fields (NNFF), are bridging the gap between macroscopically relevant parameters and quantum mechanical simulations. This work describes an NNFF training strategy and uses it as the back end for an effective harmonic potential study of phase transitions in hafnia. While good agreement with experiment is found regarding the monoclinic-tetragonal transition, the commonly assumed transition to a Fm$\overline{3}$m cubic phase is found to be unlikely for the stoichiometric material
科研通智能强力驱动
Strongly Powered by AbleSci AI