费斯特共振能量转移
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
2019年冠状病毒病(COVID-19)
病毒学
2019-20冠状病毒爆发
同种类的
荧光
抗体
化学
计算生物学
生物
医学
遗传学
统计物理学
光学
物理
爆发
病理
传染病(医学专业)
疾病
作者
Lei Zhao,Qingwei Song,Weikang Mai,Min Deng,Yu Lei,Lu Chen,Weiya Kong,Lei Zhang,Lin Zhang,Yantao Li,Huiru Ye,Yiru Qin,Tao Zhang,Yongjun Hu,Tianxing Ji,Wei Wei
标识
DOI:10.1016/j.cej.2023.143616
摘要
Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000–1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 μg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.
科研通智能强力驱动
Strongly Powered by AbleSci AI