堆积
化学
单层
垂直的
退火(玻璃)
溶剂
共价键
各向异性
微晶
化学气相沉积
化学物理
化学工程
结晶学
材料科学
有机化学
复合材料
光学
生物化学
物理
工程类
数学
几何学
作者
Congcong Yin,Zhaosheng Hou,Zhe Zhang,Mingjie Wei,Xiansong Shi,Yatao Zhang,Jingtao Wang,Yong Wang
摘要
Covalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment. COF thin films are first synthesized to have flexible N-H bonds in their skeletons, thus having structural mobility to enable molecular rearrangement. A solvent with low relative permittivity and a conjugated structure is then identified to have a strong affinity toward the COFs, allowing its vapor to easily penetrate into the COF interlayers. The solvent vapor weakens the π-π interaction and consequently allows the COF monolayers to dissociate. The COF monolayers undergo a reorientation process that converts from random stacking into the face-on stacking fashion, in which the through COF pores are perpendicularly aligned. The aligned COF film exhibits high separation precision toward ions featuring a size difference down to 2 Å, which is 8 times higher than that of the anisotropically oriented counterpart. This work opens up an avenue for COF orientation regulation by solvent vapor annealing and reveals the essential role of the perpendicular alignment of COF pore channels to enable precision separations.
科研通智能强力驱动
Strongly Powered by AbleSci AI