清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products

合金 铝酸盐 电化学 氧化物 催化作用 无机化学 氢氧化物 材料科学 化学工程 吸附 法拉第效率 拉曼光谱 冶金 化学 电极 物理化学 工程类 水泥 物理 光学 生物化学
作者
Ziyang Zhang,Hao Tian,Lei Bian,Shi-Ze Liu,Yuan Liu,Zhongli Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:83: 90-97 被引量:180
标识
DOI:10.1016/j.jechem.2023.04.034
摘要

The electrochemical CO2 reduction reaction to produce multi-carbon (C2+) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density. However, producing C2+ at high current densities is still a challenge. Herein, we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO2 to C2+ products. The Cu-Zn-Al-Layered Double Hydroxide (LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst. Under electrochemical reduction, Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged. The alloy and oxide are closely stacked and arranged alternately, and the aluminate oxide induces the strong electron interaction of Cu, Zn and Al, creating a large number of highly active reaction interfaces composed of 0 to +3 valence metal sites. With the help of the interface effect, the optimized Cu9Zn1/Cu0.8Zn0.2Al2O4 catalyst achieves a Faradaic efficiency of 88.5% for C2+ products at a current density of 400 mA cm−2 at −1.15 V versus reversible hydrogen electrode. The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy (ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO2 and the dissociation of H2O and strengthens the adsorption of CO intermediates, and the alloy promotes the C–C coupling to produce C2+ products. This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今我来思完成签到 ,获得积分10
19秒前
小蘑菇应助neptuniar采纳,获得10
29秒前
甜美的觅荷完成签到,获得积分10
36秒前
尊敬的凌晴完成签到 ,获得积分10
44秒前
54秒前
愤怒的念蕾完成签到,获得积分10
57秒前
cgs完成签到 ,获得积分10
58秒前
自由的雅旋完成签到 ,获得积分10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
悠树里完成签到,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
neptuniar发布了新的文献求助10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
keke发布了新的文献求助10
2分钟前
外向白竹完成签到,获得积分20
2分钟前
慕青应助keke采纳,获得10
2分钟前
jlwang完成签到,获得积分10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
3分钟前
简单花花完成签到,获得积分10
3分钟前
mojiu发布了新的文献求助30
3分钟前
Tong完成签到,获得积分0
3分钟前
外向白竹发布了新的文献求助10
3分钟前
酷然完成签到,获得积分10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
知行者完成签到 ,获得积分10
4分钟前
4分钟前
开心每一天完成签到 ,获得积分10
5分钟前
爆米花应助keke采纳,获得10
5分钟前
5分钟前
AM发布了新的文献求助10
5分钟前
mojiu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299