F3Net: Fast Fourier Filter Network for Hyperspectral Image Classification

快速傅里叶变换 计算机科学 高光谱成像 傅里叶变换 滤波器(信号处理) 人工智能 离散傅里叶变换(通用) 频域 卷积(计算机科学) 模式识别(心理学) 算法 块(置换群论) 计算机视觉 人工神经网络 傅里叶分析 数学 短时傅里叶变换 数学分析 几何学
作者
Hao Shi,Guo Cao,Youqiang Zhang,Zixian Ge,Yanbo Liu,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:2
标识
DOI:10.1109/tim.2023.3277100
摘要

In the hyperspectral image (HSI) classification, there are numerous deep learning-based research routes that have emerged recently. Among them, two methodologies attract our attention. One is CNN-based classification and the other is transformer-based classification. The essence of these two methodologies is to interchange information locally or at a long distance for HSI pixels in the spatial or spectral-spatial domain. There are two principles underlying this essence—the information mixing mechanism and the information mixing domain. Although both CNN-based and transformer-based have made efforts in these two principles and obtained favorable classification results, there is still room for improvement in terms of accuracy and efficiency. To further enhance the accuracy and efficiency under the two principles, fast Fourier transform (FFT) is introduced to HSI classification and a fast Fourier filter is designed to mix information efficiently in the frequency domain by means of FFT. The parametric-free characteristic and fast computation of FFT can assist us in efficiently learning interactions among features in the frequency domain. Furthermore, a fast Fourier filter block is built upon the fast Fourier filter for repeatedly using as a basic block. In addition, we propose a spectral-spatial convolution tokenizer (SSCT) to extract shallow features and prepare spectral-spatial tokens for fast Fourier filter blocks. Finally, by employing SSCT and fast Fourier filter blocks, a novel deep neural network architecture—fast Fourier filter network (F 3 Net) is proposed for HSI classification. F 3 Net-P as a pyramidal variant of F 3 Net is also investigated. Experimental results on four datasets comprehensively evaluate our models and indicate that they are competitive with several current state-of-the-art methods, especially when the training samples are extremely limited. Specifically, F 3 Net-P achieves the highest accuracy of 97.25%, 98.08%, 97.49% and 97.95% on the four datasets, respectively, outperforming second best compared model by 1.49%, 2.03%, 2.14% and 1.94%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美的梦菲完成签到,获得积分10
1秒前
危机的夏寒完成签到,获得积分10
1秒前
渭南第一大帅逼完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
曼陀山庄发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助亦v采纳,获得10
4秒前
Rachel完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
强哥发布了新的文献求助10
5秒前
natmed应助莫123采纳,获得10
5秒前
Ava应助攒一口袋星星采纳,获得10
6秒前
eriollee完成签到 ,获得积分10
6秒前
6秒前
7秒前
呜呼完成签到 ,获得积分10
8秒前
大模型应助积极的沧海采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
wangxuejiao发布了新的文献求助10
11秒前
12秒前
shukq发布了新的文献求助10
12秒前
12秒前
siu发布了新的文献求助10
12秒前
琪琪格发布了新的文献求助10
13秒前
刻苦的淇完成签到 ,获得积分10
13秒前
旧月发布了新的文献求助10
13秒前
wanci应助饶天源采纳,获得10
13秒前
科研通AI6.1应助12采纳,获得10
13秒前
13秒前
15秒前
赫连紫发布了新的文献求助10
15秒前
潘善若发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769758
求助须知:如何正确求助?哪些是违规求助? 5581454
关于积分的说明 15422558
捐赠科研通 4903392
什么是DOI,文献DOI怎么找? 2638203
邀请新用户注册赠送积分活动 1586098
关于科研通互助平台的介绍 1541186