亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

F3Net: Fast Fourier Filter Network for Hyperspectral Image Classification

快速傅里叶变换 计算机科学 高光谱成像 傅里叶变换 滤波器(信号处理) 人工智能 离散傅里叶变换(通用) 频域 卷积(计算机科学) 模式识别(心理学) 算法 块(置换群论) 计算机视觉 人工神经网络 傅里叶分析 数学 短时傅里叶变换 数学分析 几何学
作者
Hao Shi,Guo Cao,Youqiang Zhang,Zixian Ge,Yanbo Liu,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:2
标识
DOI:10.1109/tim.2023.3277100
摘要

In the hyperspectral image (HSI) classification, there are numerous deep learning-based research routes that have emerged recently. Among them, two methodologies attract our attention. One is CNN-based classification and the other is transformer-based classification. The essence of these two methodologies is to interchange information locally or at a long distance for HSI pixels in the spatial or spectral-spatial domain. There are two principles underlying this essence—the information mixing mechanism and the information mixing domain. Although both CNN-based and transformer-based have made efforts in these two principles and obtained favorable classification results, there is still room for improvement in terms of accuracy and efficiency. To further enhance the accuracy and efficiency under the two principles, fast Fourier transform (FFT) is introduced to HSI classification and a fast Fourier filter is designed to mix information efficiently in the frequency domain by means of FFT. The parametric-free characteristic and fast computation of FFT can assist us in efficiently learning interactions among features in the frequency domain. Furthermore, a fast Fourier filter block is built upon the fast Fourier filter for repeatedly using as a basic block. In addition, we propose a spectral-spatial convolution tokenizer (SSCT) to extract shallow features and prepare spectral-spatial tokens for fast Fourier filter blocks. Finally, by employing SSCT and fast Fourier filter blocks, a novel deep neural network architecture—fast Fourier filter network (F 3 Net) is proposed for HSI classification. F 3 Net-P as a pyramidal variant of F 3 Net is also investigated. Experimental results on four datasets comprehensively evaluate our models and indicate that they are competitive with several current state-of-the-art methods, especially when the training samples are extremely limited. Specifically, F 3 Net-P achieves the highest accuracy of 97.25%, 98.08%, 97.49% and 97.95% on the four datasets, respectively, outperforming second best compared model by 1.49%, 2.03%, 2.14% and 1.94%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11112321321完成签到 ,获得积分10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
漂亮夏兰完成签到 ,获得积分10
58秒前
1分钟前
小宋发布了新的文献求助10
1分钟前
1分钟前
coraline26完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
忧郁菲鹰发布了新的文献求助30
2分钟前
Evilw1an完成签到 ,获得积分10
2分钟前
Limerencia完成签到,获得积分10
2分钟前
高天雨完成签到 ,获得积分10
2分钟前
2分钟前
隐形白易发布了新的文献求助10
2分钟前
cnspower完成签到,获得积分0
2分钟前
2分钟前
wanwan完成签到,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Artin发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Sean完成签到,获得积分10
4分钟前
Sean发布了新的文献求助10
5分钟前
我是老大应助Sean采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723904
求助须知:如何正确求助?哪些是违规求助? 5282409
关于积分的说明 15299338
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616598
邀请新用户注册赠送积分活动 1566476
关于科研通互助平台的介绍 1523314