F3Net: Fast Fourier Filter Network for Hyperspectral Image Classification

快速傅里叶变换 计算机科学 高光谱成像 傅里叶变换 滤波器(信号处理) 人工智能 离散傅里叶变换(通用) 频域 卷积(计算机科学) 模式识别(心理学) 算法 块(置换群论) 计算机视觉 人工神经网络 傅里叶分析 数学 短时傅里叶变换 数学分析 几何学
作者
Hao Shi,Guo Cao,Youqiang Zhang,Zixian Ge,Yanbo Liu,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:2
标识
DOI:10.1109/tim.2023.3277100
摘要

In the hyperspectral image (HSI) classification, there are numerous deep learning-based research routes that have emerged recently. Among them, two methodologies attract our attention. One is CNN-based classification and the other is transformer-based classification. The essence of these two methodologies is to interchange information locally or at a long distance for HSI pixels in the spatial or spectral-spatial domain. There are two principles underlying this essence—the information mixing mechanism and the information mixing domain. Although both CNN-based and transformer-based have made efforts in these two principles and obtained favorable classification results, there is still room for improvement in terms of accuracy and efficiency. To further enhance the accuracy and efficiency under the two principles, fast Fourier transform (FFT) is introduced to HSI classification and a fast Fourier filter is designed to mix information efficiently in the frequency domain by means of FFT. The parametric-free characteristic and fast computation of FFT can assist us in efficiently learning interactions among features in the frequency domain. Furthermore, a fast Fourier filter block is built upon the fast Fourier filter for repeatedly using as a basic block. In addition, we propose a spectral-spatial convolution tokenizer (SSCT) to extract shallow features and prepare spectral-spatial tokens for fast Fourier filter blocks. Finally, by employing SSCT and fast Fourier filter blocks, a novel deep neural network architecture—fast Fourier filter network (F 3 Net) is proposed for HSI classification. F 3 Net-P as a pyramidal variant of F 3 Net is also investigated. Experimental results on four datasets comprehensively evaluate our models and indicate that they are competitive with several current state-of-the-art methods, especially when the training samples are extremely limited. Specifically, F 3 Net-P achieves the highest accuracy of 97.25%, 98.08%, 97.49% and 97.95% on the four datasets, respectively, outperforming second best compared model by 1.49%, 2.03%, 2.14% and 1.94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助shimmer.采纳,获得10
1秒前
2秒前
3秒前
3秒前
Saturn完成签到,获得积分10
3秒前
QW111发布了新的文献求助10
3秒前
飞快的孱发布了新的文献求助10
3秒前
曲奇发布了新的文献求助30
5秒前
会飞的猪发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
务实的鞯完成签到,获得积分10
8秒前
科研通AI6应助yy采纳,获得10
8秒前
8秒前
要减肥的镜子完成签到,获得积分10
9秒前
10秒前
FlipFlops完成签到,获得积分10
11秒前
11秒前
蓝天应助阿尔文采纳,获得10
11秒前
生动梦松应助科研通管家采纳,获得10
11秒前
不安冷风应助科研通管家采纳,获得10
12秒前
fifteen应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
鸣笛应助科研通管家采纳,获得30
12秒前
ricky应助科研通管家采纳,获得10
12秒前
不安冷风应助科研通管家采纳,获得10
12秒前
卤鸡腿应助科研通管家采纳,获得20
12秒前
Akim应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
不想干活应助科研通管家采纳,获得10
13秒前
不安冷风应助科研通管家采纳,获得10
13秒前
生动梦松应助科研通管家采纳,获得10
13秒前
不想干活应助科研通管家采纳,获得10
13秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888