F3Net: Fast Fourier Filter Network for Hyperspectral Image Classification

快速傅里叶变换 计算机科学 高光谱成像 傅里叶变换 滤波器(信号处理) 人工智能 离散傅里叶变换(通用) 频域 卷积(计算机科学) 模式识别(心理学) 算法 块(置换群论) 计算机视觉 人工神经网络 傅里叶分析 数学 短时傅里叶变换 数学分析 几何学
作者
Hao Shi,Guo Cao,Youqiang Zhang,Zixian Ge,Yanbo Liu,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:2
标识
DOI:10.1109/tim.2023.3277100
摘要

In the hyperspectral image (HSI) classification, there are numerous deep learning-based research routes that have emerged recently. Among them, two methodologies attract our attention. One is CNN-based classification and the other is transformer-based classification. The essence of these two methodologies is to interchange information locally or at a long distance for HSI pixels in the spatial or spectral-spatial domain. There are two principles underlying this essence—the information mixing mechanism and the information mixing domain. Although both CNN-based and transformer-based have made efforts in these two principles and obtained favorable classification results, there is still room for improvement in terms of accuracy and efficiency. To further enhance the accuracy and efficiency under the two principles, fast Fourier transform (FFT) is introduced to HSI classification and a fast Fourier filter is designed to mix information efficiently in the frequency domain by means of FFT. The parametric-free characteristic and fast computation of FFT can assist us in efficiently learning interactions among features in the frequency domain. Furthermore, a fast Fourier filter block is built upon the fast Fourier filter for repeatedly using as a basic block. In addition, we propose a spectral-spatial convolution tokenizer (SSCT) to extract shallow features and prepare spectral-spatial tokens for fast Fourier filter blocks. Finally, by employing SSCT and fast Fourier filter blocks, a novel deep neural network architecture—fast Fourier filter network (F 3 Net) is proposed for HSI classification. F 3 Net-P as a pyramidal variant of F 3 Net is also investigated. Experimental results on four datasets comprehensively evaluate our models and indicate that they are competitive with several current state-of-the-art methods, especially when the training samples are extremely limited. Specifically, F 3 Net-P achieves the highest accuracy of 97.25%, 98.08%, 97.49% and 97.95% on the four datasets, respectively, outperforming second best compared model by 1.49%, 2.03%, 2.14% and 1.94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助zly采纳,获得30
3秒前
完美世界应助娇气的天亦采纳,获得10
5秒前
7秒前
10秒前
科目三应助彭栋采纳,获得10
12秒前
方文浩发布了新的文献求助10
12秒前
ding应助YWang采纳,获得10
15秒前
15秒前
林宝雯关注了科研通微信公众号
20秒前
23秒前
斯文败类应助GGBOND采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
李健的小迷弟应助GGBOND采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
24秒前
大模型应助科研通管家采纳,获得10
24秒前
圆锥香蕉应助科研通管家采纳,获得20
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Bio应助科研通管家采纳,获得30
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
25秒前
28秒前
30秒前
30秒前
Dotson发布了新的文献求助10
31秒前
sinsinsin发布了新的文献求助10
32秒前
CodeCraft应助娇气的天亦采纳,获得10
33秒前
34秒前
权思远发布了新的文献求助10
34秒前
彭栋发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
李爱国应助收集快乐采纳,获得10
36秒前
守墓人完成签到 ,获得积分10
37秒前
38秒前
科研通AI5应助xiaoxiao采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105