F3Net: Fast Fourier Filter Network for Hyperspectral Image Classification

快速傅里叶变换 计算机科学 高光谱成像 傅里叶变换 滤波器(信号处理) 人工智能 离散傅里叶变换(通用) 频域 卷积(计算机科学) 模式识别(心理学) 算法 块(置换群论) 计算机视觉 人工神经网络 傅里叶分析 数学 短时傅里叶变换 数学分析 几何学
作者
Hao Shi,Guo Cao,Youqiang Zhang,Zixian Ge,Yanbo Liu,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:2
标识
DOI:10.1109/tim.2023.3277100
摘要

In the hyperspectral image (HSI) classification, there are numerous deep learning-based research routes that have emerged recently. Among them, two methodologies attract our attention. One is CNN-based classification and the other is transformer-based classification. The essence of these two methodologies is to interchange information locally or at a long distance for HSI pixels in the spatial or spectral-spatial domain. There are two principles underlying this essence—the information mixing mechanism and the information mixing domain. Although both CNN-based and transformer-based have made efforts in these two principles and obtained favorable classification results, there is still room for improvement in terms of accuracy and efficiency. To further enhance the accuracy and efficiency under the two principles, fast Fourier transform (FFT) is introduced to HSI classification and a fast Fourier filter is designed to mix information efficiently in the frequency domain by means of FFT. The parametric-free characteristic and fast computation of FFT can assist us in efficiently learning interactions among features in the frequency domain. Furthermore, a fast Fourier filter block is built upon the fast Fourier filter for repeatedly using as a basic block. In addition, we propose a spectral-spatial convolution tokenizer (SSCT) to extract shallow features and prepare spectral-spatial tokens for fast Fourier filter blocks. Finally, by employing SSCT and fast Fourier filter blocks, a novel deep neural network architecture—fast Fourier filter network (F 3 Net) is proposed for HSI classification. F 3 Net-P as a pyramidal variant of F 3 Net is also investigated. Experimental results on four datasets comprehensively evaluate our models and indicate that they are competitive with several current state-of-the-art methods, especially when the training samples are extremely limited. Specifically, F 3 Net-P achieves the highest accuracy of 97.25%, 98.08%, 97.49% and 97.95% on the four datasets, respectively, outperforming second best compared model by 1.49%, 2.03%, 2.14% and 1.94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到 ,获得积分10
1秒前
追光者完成签到,获得积分10
1秒前
HJJHJH发布了新的文献求助10
2秒前
Advance.Cheng发布了新的文献求助10
2秒前
传统的大白完成签到,获得积分10
2秒前
复杂的白秋完成签到,获得积分10
3秒前
3秒前
舒适的平蓝完成签到,获得积分10
4秒前
DAI123完成签到,获得积分10
4秒前
4秒前
阳yang发布了新的文献求助10
4秒前
HIH完成签到 ,获得积分10
5秒前
可靠的寒风完成签到,获得积分10
6秒前
Pan完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
丢丢丢完成签到,获得积分10
7秒前
安静的ky完成签到,获得积分10
7秒前
JamesPei应助mary采纳,获得10
7秒前
木子林夕完成签到,获得积分10
7秒前
勤奋尔丝完成签到 ,获得积分10
8秒前
8秒前
9秒前
haozi完成签到,获得积分10
9秒前
啾啾啾发布了新的文献求助30
10秒前
KK发布了新的文献求助10
10秒前
魏魏魏完成签到,获得积分10
10秒前
明明发布了新的文献求助10
11秒前
pluto应助淘气科研采纳,获得10
11秒前
晴栀发布了新的文献求助10
11秒前
单纯血茗发布了新的文献求助50
11秒前
冷艳的冬萱完成签到 ,获得积分10
12秒前
lemon完成签到,获得积分10
12秒前
平常的路人完成签到,获得积分10
12秒前
丢丢丢发布了新的文献求助10
13秒前
orixero应助靖123456采纳,获得10
16秒前
SYLH应助chlgkmoney采纳,获得30
16秒前
阳洋洋发布了新的文献求助10
18秒前
所所应助tuo zhang采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029