YOLOv5s-M: A deep learning network model for road pavement damage detection from urban street-view imagery

背景(考古学) 计算机科学 特征(语言学) 交叉口(航空) 人工智能 对角线的 深度学习 比例(比率) 运输工程 计算机视觉 数据挖掘 工程类 地图学 地理 数学 哲学 语言学 考古 几何学
作者
Ran Miao,Xianfeng Zhang,Xiao Chen,Bo Zhou,Zhiquan Feng
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:120: 103335-103335
标识
DOI:10.1016/j.jag.2023.103335
摘要

Road pavement damage affects driving comfort markedly, threatens driving safety, and may even cause traffic accidents. The traffic management department conventionally captures pavement damage information mainly using manual and vehicle-mounted equipment, which is not conducive to the detection of large-scale road pavement distress. Street-view images can provide full-view images of urban roads where the data is updated regularly by navigation map service companies, making it possible to rapidly detect pavement damage in urban areas. This paper presents a new pavement damage detection approach that is built upon an improved YOLOv5 network and street-view images. The proposed model can deal with a large-scale detection layer to improve the detection precision of large distress targets, achieving thus both cross-layer and cross-scale feature fusion by using the Generalized Feature Pyramid Network (Generalized-FPN) structure. The improved network also involves a diagonal Intersection over Union loss for regression calculation of the boundary box and builds the decoupled Head structure to achieve the decoupling detection of prediction and regression. As a result, the fusion of the weak feature information in feature layers is enhanced at different spatial scales, a more suitable method is achieved for pavement damage detection in the complex context of multi-scale street-view images, and the accuracy of the modified network is much improved in the detection of pavement distress from street-view imagery. Furthermore, We created a large image sample set for model training and testing, and a total of 156,304 street-view images, obtained from Fengtai District, Beijing, China was used for demonstrating the usefulness of the proposed network. The findings indicated that the proposed approach could effectively achieve pavement damage detection of urban roads from street-view images, with a precision average of 79.8% on the test samples. Moreover, the developed model was applied for pavement damage detection for all the roads in Fengtai District, Beijing, indicating that our method can offer viable damage data for road maintenance planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Y.B.Cao完成签到,获得积分10
1秒前
小鑫完成签到,获得积分10
2秒前
zzx发布了新的文献求助10
2秒前
慕新完成签到,获得积分0
5秒前
天天快乐应助missinglotta采纳,获得10
5秒前
GHL完成签到,获得积分10
6秒前
帅气的雷完成签到,获得积分10
6秒前
木木完成签到,获得积分10
6秒前
鸽子完成签到,获得积分10
8秒前
八月完成签到,获得积分10
8秒前
8秒前
在封我就急眼啦完成签到,获得积分10
9秒前
浮尘完成签到 ,获得积分0
9秒前
11秒前
aaa完成签到,获得积分10
11秒前
高贵的思天完成签到,获得积分10
11秒前
灵巧的十八完成签到 ,获得积分10
13秒前
13秒前
成就宛完成签到,获得积分10
14秒前
Summer发布了新的文献求助10
14秒前
开心烨磊发布了新的文献求助10
15秒前
16秒前
18秒前
外向的易蓉完成签到 ,获得积分10
18秒前
osmanthus完成签到,获得积分10
18秒前
满城烟沙完成签到 ,获得积分0
20秒前
JIASHOUSHOU完成签到,获得积分10
20秒前
21秒前
21秒前
俭朴巨人发布了新的文献求助10
21秒前
胡hhhhhhhhhh发布了新的文献求助10
22秒前
callmecjh完成签到,获得积分10
22秒前
22秒前
23秒前
局外人完成签到,获得积分10
23秒前
在水一方应助开心烨磊采纳,获得10
23秒前
生信小菜鸟完成签到 ,获得积分10
23秒前
shiqi1108完成签到 ,获得积分10
23秒前
25秒前
頔頔哒哒发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761136
求助须知:如何正确求助?哪些是违规求助? 3305089
关于积分的说明 10132226
捐赠科研通 3019082
什么是DOI,文献DOI怎么找? 1657974
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754608