Crisscross-Global Vision Transformers Model for Very High Resolution Aerial Image Semantic Segmentation

计算机科学 人工智能 分割 高分辨率 图像分割 计算机视觉 遥感 航空影像 地质学 图像(数学)
作者
Guohui Deng,Zhaocong Wu,Miaozhong Xu,Chengjun Wang,Zhiye Wang,Zhongyuan Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3276172
摘要

Semantic segmentation is a key means for understanding very-high resolution (VHR) aerial imagery. With the explosive development of deep learning, deep learning methods are being applied to the segmentation of VHR images, with convolutional neural networks (CNNs) as the basic framework. However, owing to the highly complex details present in VHR images and the high spatial dependence of geographical objects, CNN-based methods are inadequate. This is because the inherent locality of CNNs limits the size of the receptive field, thus limiting the ability to obtain long-range context information. To solve this problem, in this paper, we propose a transformer-based novel deep learning model called crisscross-global vision transformers (CGVT). CGVT exploits the transformer's inherent ability to obtain long-range context information to solve the restricted receptive field problem. Specifically, we redesign the self-attention mechanism in the transformer and call it crisscross-global attention. It consists of two parts: crisscross transformer encoder block (CC-TEB) and global squeeze transformer encoder block (GS-TEB). CC-TEB overcomes the limitation of the traditional self-attention design (specifically, difficulty applying it to VHR aerial image segmentation) and further increases the local feature representation ability of the model. GS-TEB increases the global feature representation ability of the model. The results of experiments conducted on the popular ISPRS Vaihingen, IEEE GRSS Data Fusion Contest Zeebrugge, and LoveDA Semantic Segmentation Challenge datasets verify the effectiveness and superiority of our proposed method. Specifically, it achieved state-of-the-art performance on both Zeebrugge and LoveDA datasets, and is currently ranked second in Vaihingen dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
洛洛完成签到,获得积分10
3秒前
李健应助霸气的金鱼采纳,获得10
3秒前
梦会故乡完成签到,获得积分10
4秒前
4秒前
木木杨完成签到,获得积分10
5秒前
5秒前
6秒前
研友_nxV4m8完成签到,获得积分10
6秒前
YC发布了新的文献求助20
6秒前
XIEMIN发布了新的文献求助10
7秒前
7秒前
迷你的晓槐关注了科研通微信公众号
8秒前
songguodong完成签到,获得积分10
9秒前
糊涂的保温杯完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
FIN应助jhz采纳,获得10
11秒前
chen应助二巨头采纳,获得10
13秒前
天66完成签到,获得积分20
13秒前
刘璇1发布了新的文献求助10
13秒前
15秒前
15秒前
森花发布了新的文献求助10
17秒前
上官若男应助鳗鱼厉采纳,获得10
18秒前
18秒前
20秒前
找寻四氢叶酸完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
23秒前
24秒前
慕青应助今时今日采纳,获得30
25秒前
25秒前
地尔硫卓发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663