已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Connectivity Representation Learning Network for Major Depressive Disorder Diagnosis

计算机科学 功能磁共振成像 代表(政治) 人工智能 模态(人机交互) 特征学习 机器学习 模式识别(心理学) 理论计算机科学 神经科学 政治学 政治 法学 生物
作者
Youyong Kong,Wenhan Wang,Xiaoyun Liu,Shuwen Gao,Zhenghua Hou,Chunming Xie,Zhijun Zhang,Yonggui Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3012-3024 被引量:6
标识
DOI:10.1109/tmi.2023.3274351
摘要

The pathophysiology of major depressive disorder (MDD) has been demonstrated to be highly associated with the dysfunctional integration of brain activity. Existing studies only fuse multi-connectivity information in a one-shot approach and ignore the temporal property of functional connectivity. A desired model should utilize the rich information in multiple connectivities to help improve the performance. In this study, we develop a multi-connectivity representation learning framework to integrate multi-connectivity topological representation from structural connectivity, functional connectivity and dynamic functional connectivities for automatic diagnosis of MDD. Briefly, structural graph, static functional graph and dynamic functional graphs are first computed from the diffusion magnetic resonance imaging (dMRI) and resting state functional magnetic resonance imaging (rsfMRI). Secondly, a novel Multi-Connectivity Representation Learning Network (MCRLN) approach is developed to integrate the multiple graphs with modules of structural-functional fusion and static-dynamic fusion. We innovatively design a Structural-Functional Fusion (SFF) module, which decouples graph convolution to capture modality-specific features and modality-shared features separately for an accurate brain region representation. To further integrate the static graphs and dynamic functional graphs, a novel Static-Dynamic Fusion (SDF) module is developed to pass the important connections from static graphs to dynamic graphs via attention values. Finally, the performance of the proposed approach is comprehensively examined with large cohorts of clinical data, which demonstrates its effectiveness in classifying MDD patients. The sound performance suggests the potential of the MCRLN approach for the clinical use in diagnosis. The code is available at https://github.com/LIST-KONG/MultiConnectivity-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
英俊的铭应助单于万言采纳,获得10
5秒前
Dr YI完成签到,获得积分10
6秒前
wmx发布了新的文献求助10
8秒前
英俊的铭应助boblau采纳,获得10
10秒前
evermore完成签到,获得积分10
11秒前
自然的依丝完成签到,获得积分20
14秒前
19秒前
19秒前
笑点低的碧琴完成签到,获得积分10
22秒前
gt完成签到 ,获得积分10
23秒前
26秒前
小文殊完成签到 ,获得积分10
31秒前
35秒前
seven完成签到,获得积分10
36秒前
Ffff完成签到,获得积分10
36秒前
37秒前
汉堡包应助SYX采纳,获得10
38秒前
40秒前
41秒前
大风发布了新的文献求助10
44秒前
李健的小迷弟应助猩心采纳,获得10
44秒前
47秒前
48秒前
lyt发布了新的文献求助20
49秒前
lanruoqi发布了新的文献求助10
52秒前
大风完成签到,获得积分20
53秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
57秒前
kchrisuzad完成签到,获得积分10
1分钟前
1分钟前
ding应助温医第一打野采纳,获得10
1分钟前
starcrowd完成签到,获得积分10
1分钟前
1分钟前
姜水完成签到,获得积分10
1分钟前
1分钟前
慈祥的鸣凤完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助怕孤单的幼荷采纳,获得10
1分钟前
单于万言发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227961
关于积分的说明 9777672
捐赠科研通 2938135
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962