Multi-Connectivity Representation Learning Network for Major Depressive Disorder Diagnosis

计算机科学 功能磁共振成像 代表(政治) 人工智能 模态(人机交互) 特征学习 机器学习 模式识别(心理学) 理论计算机科学 神经科学 政治学 生物 政治 法学
作者
Youyong Kong,Wenhan Wang,Xiaoyun Liu,Shuwen Gao,Zhenghua Hou,Chunming Xie,Zhijun Zhang,Yonggui Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3012-3024 被引量:14
标识
DOI:10.1109/tmi.2023.3274351
摘要

The pathophysiology of major depressive disorder (MDD) has been demonstrated to be highly associated with the dysfunctional integration of brain activity. Existing studies only fuse multi-connectivity information in a one-shot approach and ignore the temporal property of functional connectivity. A desired model should utilize the rich information in multiple connectivities to help improve the performance. In this study, we develop a multi-connectivity representation learning framework to integrate multi-connectivity topological representation from structural connectivity, functional connectivity and dynamic functional connectivities for automatic diagnosis of MDD. Briefly, structural graph, static functional graph and dynamic functional graphs are first computed from the diffusion magnetic resonance imaging (dMRI) and resting state functional magnetic resonance imaging (rsfMRI). Secondly, a novel Multi-Connectivity Representation Learning Network (MCRLN) approach is developed to integrate the multiple graphs with modules of structural-functional fusion and static-dynamic fusion. We innovatively design a Structural-Functional Fusion (SFF) module, which decouples graph convolution to capture modality-specific features and modality-shared features separately for an accurate brain region representation. To further integrate the static graphs and dynamic functional graphs, a novel Static-Dynamic Fusion (SDF) module is developed to pass the important connections from static graphs to dynamic graphs via attention values. Finally, the performance of the proposed approach is comprehensively examined with large cohorts of clinical data, which demonstrates its effectiveness in classifying MDD patients. The sound performance suggests the potential of the MCRLN approach for the clinical use in diagnosis. The code is available at https://github.com/LIST-KONG/MultiConnectivity-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sahula发布了新的文献求助10
刚刚
坚定笑蓝完成签到,获得积分10
刚刚
摇滚谬中庸完成签到 ,获得积分10
刚刚
浮游应助MgO采纳,获得10
刚刚
王者归来完成签到,获得积分10
刚刚
MESSI发布了新的文献求助10
刚刚
洪伟完成签到,获得积分10
1秒前
1秒前
1秒前
淡然水绿发布了新的文献求助10
2秒前
2秒前
有琪迹关注了科研通微信公众号
2秒前
2秒前
2秒前
3秒前
lyra完成签到,获得积分10
3秒前
小二郎应助张钰采纳,获得10
3秒前
chuqiao_sun发布了新的文献求助10
4秒前
weiteman完成签到,获得积分10
4秒前
斑鸠发布了新的文献求助10
4秒前
5秒前
科目三应助zxx5313491采纳,获得10
5秒前
6秒前
生动成危发布了新的文献求助10
6秒前
6秒前
7秒前
撩寮完成签到 ,获得积分10
7秒前
7秒前
朱姝发布了新的文献求助10
7秒前
顺利的慕儿完成签到 ,获得积分10
8秒前
睡个好觉完成签到,获得积分10
8秒前
宋宇骐发布了新的文献求助10
8秒前
高g完成签到,获得积分10
9秒前
小二郎应助工大搬砖战神采纳,获得10
9秒前
顾矜应助不如喂鱼去采纳,获得10
9秒前
MESSI完成签到,获得积分10
9秒前
情怀应助wuxunxun2015采纳,获得10
10秒前
超帅的豪英完成签到,获得积分10
10秒前
浮游应助陈欣瑶采纳,获得10
10秒前
吱吱吱发布了新的文献求助10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983