An Efficient Ensemble-based Machine Learning approach for Predicting Chronic Kidney Disease

机器学习 人工智能 随机森林 集成学习 计算机科学 Boosting(机器学习) 支持向量机 分类器(UML) 阿达布思 交叉验证 肾脏疾病 集合预报 医学 内科学
作者
Divyanshi Chhabra,Mamta Juneja,Gautam Chutani
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:20 被引量:5
标识
DOI:10.2174/1573405620666230508104538
摘要

Chronic kidney disease (CKD) is a long-term risk to one's health that can result in kidney failure. CKD is one of today's most serious diseases, and early detection can aid in proper treatment. Machine learning techniques have proven to be reliable in the early medical diagnosis.The paper aims to perform CKD prediction using machine learning classification approaches. The dataset used for the present study for detecting CKD was obtained from the machine learning repository at the University of California, Irvine (UCI).In this study, twelve machine learning-based classification algorithms with full features were used. Since the CKD dataset had a class imbalance issue, the Synthetic Minority Over-Sampling technique (SMOTE) was used to alleviate the problem of class imbalance and review the performance based on machine learning classification models using the K fold cross-validation technique. The proposed work compares the results of twelve classifiers with and without the SMOTE technique, and then the top three classifiers with the highest accuracy, Support Vector Machine, Random Forest, and Adaptive Boosting classification algorithms were selected to use the ensemble technique to improve performance.The accuracy achieved using a stacking classifier as an ensemble technique with cross-validation is 99.5%.The study provides an ensemble learning approach in which the top three best-performing classifiers in terms of cross-validation results are stacked in an ensemble model after balancing the dataset using SMOTE. This proposed technique could be applied to other diseases in the future, making disease detection less intrusive and cost-effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助鹿见林采纳,获得10
1秒前
Jasper应助鹿见林采纳,获得10
1秒前
orixero应助鹿见林采纳,获得10
1秒前
JamesPei应助蔺子凡采纳,获得10
3秒前
4秒前
Hello应助小高采纳,获得10
5秒前
ruoyi发布了新的文献求助10
5秒前
XHT完成签到 ,获得积分10
5秒前
6秒前
7秒前
zho发布了新的文献求助10
7秒前
传统的幻梦完成签到,获得积分10
8秒前
脆皮完成签到,获得积分10
8秒前
9秒前
9秒前
三条K完成签到,获得积分10
10秒前
tt完成签到,获得积分10
11秒前
Akim应助xuan采纳,获得20
12秒前
莉莉安发布了新的文献求助30
12秒前
脆皮发布了新的文献求助10
13秒前
记录吐吐发布了新的文献求助10
14秒前
sadasd完成签到,获得积分10
14秒前
16秒前
17秒前
Anyixx发布了新的文献求助10
19秒前
21秒前
CipherSage应助黄建雨采纳,获得10
21秒前
小高发布了新的文献求助10
21秒前
蔺子凡发布了新的文献求助10
22秒前
共享精神应助鹿见林采纳,获得10
23秒前
莉莉安完成签到,获得积分10
23秒前
华仔应助鹿见林采纳,获得10
23秒前
思源应助鹿见林采纳,获得10
23秒前
搜集达人应助鹿见林采纳,获得10
23秒前
无花果应助鹿见林采纳,获得10
23秒前
今后应助鹿见林采纳,获得10
23秒前
斯文败类应助鹿见林采纳,获得10
23秒前
香蕉觅云应助鹿见林采纳,获得10
23秒前
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651948
求助须知:如何正确求助?哪些是违规求助? 3216156
关于积分的说明 9710947
捐赠科研通 2923898
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754152
科研通“疑难数据库(出版商)”最低求助积分说明 732987