Multi-scale hybrid three-dimensional-two-dimensional-attention boosted convolutional neural network for hyperspectral image classification

高光谱成像 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 特征提取 像素 空间分析 特征(语言学) 人工神经网络 遥感 语言学 地质学 哲学
作者
Ximeng Fu,Gaoyu Wang,Chenyu Wang,Huanhuan Xu,Huiying Li
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (02) 被引量:3
标识
DOI:10.1117/1.jrs.17.026513
摘要

Hyperspectral image (HSI) classification is a hot topic in the field of remote sensing applications. However, due to the high-dimensional and extensive spectral and spatial information of HSIs, effective feature extraction is difficult, which leads to a lower accuracy of HSI classification. In this work, a convolutional neural network (CNN) approach based on a multiscale hybrid 3D-2D-attention mechanism (MHAC) is proposed. Linear discriminant analysis dimension reduction is performed for HSIs, and the central pixel and its adjacent pixels are input into the network as a whole. Based on a multi-scale three-dimensional convolutional neural network (3D CNN) and a two-dimensional convolutional neural network (2D CNN), fine spectral and spatial features are automatically extracted, which improves the network classification capability. At the same time, the channel attention mechanism is embedded in the 2D CNN, and the spatial attention mechanism is embedded in the 3D CNN, which can assign different weights to the retrieved features, effectively utilizing the spatial spectral information to optimize features and improve the feature extraction ability. The experimental results demonstrate that the MHAC achieves an accuracy of 98.72%, 97.60%, and 97.90% on the WHU-Hi dataset and 98.93% on the Indian-Pines dataset based on only 100 samples. The MHAC model proposed in this paper has a good feature extraction ability that effectively reduces the impact of high-dimensional data and small sample problems on classification and improves the accuracy of HSIs classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ANdrey采纳,获得30
1秒前
jdz546429289完成签到,获得积分20
1秒前
3秒前
jdz546429289发布了新的文献求助10
3秒前
orixero应助陈丫采纳,获得10
4秒前
瘦瘦新烟完成签到,获得积分10
6秒前
汉堡包应助嘟嘟嘟采纳,获得10
6秒前
乔乔完成签到,获得积分10
7秒前
wjl发布了新的文献求助10
7秒前
8秒前
大华完成签到,获得积分10
10秒前
Hello应助土大款采纳,获得10
10秒前
aaaaa完成签到,获得积分10
11秒前
Metrix应助程风破浪采纳,获得10
12秒前
14秒前
pan完成签到,获得积分10
14秒前
科研通AI5应助李孟佯采纳,获得10
15秒前
15秒前
15秒前
wanci应助英勇丹寒采纳,获得10
16秒前
16秒前
Ava应助王涉采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
19秒前
CodeCraft应助XIA采纳,获得10
21秒前
21秒前
lili发布了新的文献求助10
21秒前
huang发布了新的文献求助10
23秒前
yao发布了新的文献求助10
24秒前
萌萌雨发布了新的文献求助10
24秒前
25秒前
25秒前
识南完成签到,获得积分10
26秒前
袁..发布了新的文献求助10
27秒前
忐忑的菠萝完成签到,获得积分20
28秒前
核桃花生奶兔完成签到 ,获得积分10
29秒前
lili完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256