激子
材料科学
光电子学
化学气相沉积
化学工程
化学物理
结晶学
纳米技术
凝聚态物理
化学
物理
工程类
作者
Md Tarik Hossain,Tadasha Jena,Upasana Nath,Manabendra Sarma,P. K. Giri
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (26): 11222-11236
被引量:5
摘要
The appealing success of non-van der Waals (non-VdW) two-dimensional (2D) bismuth oxyselenide (Bi2O2Se) crystals in optoelectronics provides an exciting avenue to investigate their fundamental physical properties. To date, the majority of efforts have focused on understanding the properties of 2D Bi2O2Se, usually grown on a mica substrate. However, a gap exists in realizing the origin of photoluminescence (PL) of new age non-VdW Bi2O2Se at visible and near-infrared (NIR) wavelengths and the effect of growth substrates on the structure and optical properties. Herein, we report that the formation of multiple excitons in momentum valleys is responsible for broadband absorption and visible PL from a few layer thick 2D Bi2O2Se. The effect of growth substrates on the structure and optical properties is investigated in detail. Our studies unfold that the growth substrates (mica, sapphire, quartz, SiO2, glass) introduce strain/doping in chemical vapor deposition (CVD)-grown Bi2O2Se crystals, and consequently, the morphology, lattice constant, absorption coefficient, optical bandgap, refractive index, and PL properties are modulated. In addition, the possible direct/indirect multiple exciton formation at the valence band to the conduction band at different symmetry points of Bi2O2Se is analyzed from experimental data on different growth substrates and corroborated with the density functional theory (DFT) calculation of the electronic band structure. Furthermore, temperature-dependent photo-carrier dynamics discloses an A/Γ-exciton activation energy of 209.6 meV in Bi2O2Se. These findings are significant for the futuristic optoelectronic applications of Bi2O2Se and the choice of growth substrates on directly fabricated nanodevices.
科研通智能强力驱动
Strongly Powered by AbleSci AI