A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data

弹道 计算机科学 抓住 运动学 维数(图论) 编码器 人工智能 实时计算 模拟 数学 天文 经典力学 操作系统 物理 程序设计语言 纯数学
作者
Siwen Wang,Ying Li,Hu Xing
出处
期刊:Ocean Engineering [Elsevier]
卷期号:281: 114846-114846 被引量:60
标识
DOI:10.1016/j.oceaneng.2023.114846
摘要

Ship trajectory prediction plays a key role in the early warning and safety of maritime navigation. Ship pilots must have a complete grasp of the future trajectories of ships within a certain period of time when moving the ship to effectively avoid collisions. However, the accuracy of ship trajectory prediction is a significant issue that needs to be resolved at present. In this paper, we propose a ship trajectory prediction model covering spatio-temporal awareness graph attention network (GAT) based on long short-term memory network (LSTM) to predict the future trajectories of ships in complex scenarios, named STPGL model, which adopts the design of encoder–decoder structure. The historical encoder uses an LSTM to extract the kinematic sequence features of each ship from historical trajectories in the temporal dimension. The interactive encoder summarizes the interaction features between different ships through GAT in the spatial dimension. Then, the two features are fused and fed into the decoder module to infer the future trajectories of ships. The experimental results demonstrate that STPGL model can effectively improve the prediction accuracy of short-term, medium-term and long-term ship trajectory. It has excellent performance and has a certain reference value for the advancement of unmanned ship collision avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕洺旭应助无能的丈夫采纳,获得10
刚刚
skyscraper完成签到,获得积分10
2秒前
3秒前
3秒前
shun完成签到,获得积分10
4秒前
善学以致用应助danli采纳,获得10
5秒前
平淡萍发布了新的文献求助20
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
清新的一笑完成签到,获得积分10
8秒前
大恐龙的噗噗完成签到,获得积分10
8秒前
9秒前
letter发布了新的文献求助30
9秒前
zho应助123Y采纳,获得10
9秒前
大模型应助可爱的夏青采纳,获得10
11秒前
yunjian1583发布了新的文献求助10
11秒前
五木完成签到,获得积分10
12秒前
天天快乐应助sun采纳,获得10
12秒前
大白兔完成签到 ,获得积分10
12秒前
李小莉0419完成签到 ,获得积分10
12秒前
安静的眼神完成签到,获得积分10
13秒前
14秒前
阔达的丹萱完成签到,获得积分10
16秒前
脑洞疼应助闪闪穆采纳,获得10
17秒前
sun完成签到,获得积分10
18秒前
QUPY发布了新的文献求助10
19秒前
19秒前
ltq发布了新的文献求助10
20秒前
完美世界应助温暖如风采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655