A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data

弹道 计算机科学 抓住 运动学 维数(图论) 编码器 人工智能 实时计算 模拟 数学 天文 经典力学 操作系统 物理 程序设计语言 纯数学
作者
Siwen Wang,Ying Li,Hu Xing
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:281: 114846-114846 被引量:28
标识
DOI:10.1016/j.oceaneng.2023.114846
摘要

Ship trajectory prediction plays a key role in the early warning and safety of maritime navigation. Ship pilots must have a complete grasp of the future trajectories of ships within a certain period of time when moving the ship to effectively avoid collisions. However, the accuracy of ship trajectory prediction is a significant issue that needs to be resolved at present. In this paper, we propose a ship trajectory prediction model covering spatio-temporal awareness graph attention network (GAT) based on long short-term memory network (LSTM) to predict the future trajectories of ships in complex scenarios, named STPGL model, which adopts the design of encoder–decoder structure. The historical encoder uses an LSTM to extract the kinematic sequence features of each ship from historical trajectories in the temporal dimension. The interactive encoder summarizes the interaction features between different ships through GAT in the spatial dimension. Then, the two features are fused and fed into the decoder module to infer the future trajectories of ships. The experimental results demonstrate that STPGL model can effectively improve the prediction accuracy of short-term, medium-term and long-term ship trajectory. It has excellent performance and has a certain reference value for the advancement of unmanned ship collision avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123发布了新的文献求助10
1秒前
爆米花应助传统的松鼠采纳,获得10
1秒前
忐忑的草丛完成签到,获得积分10
2秒前
今后应助活泼的番茄采纳,获得10
3秒前
Jasper应助淡定的黑米采纳,获得10
3秒前
123发布了新的文献求助20
3秒前
nyf凡发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
好大一只狗完成签到,获得积分10
5秒前
6秒前
7秒前
小李完成签到 ,获得积分10
8秒前
脑洞疼应助个性盼易采纳,获得10
8秒前
饱满乌冬面完成签到,获得积分10
8秒前
9秒前
阿九发布了新的文献求助10
9秒前
9秒前
一诺相许完成签到 ,获得积分10
9秒前
10秒前
liutg24发布了新的文献求助10
11秒前
stuart发布了新的文献求助10
12秒前
Jasper应助tsuki采纳,获得10
12秒前
今天也不想搬砖完成签到,获得积分10
12秒前
13秒前
芋泥发布了新的文献求助10
13秒前
Bucky完成签到,获得积分10
13秒前
可爱的函函应助czy采纳,获得10
14秒前
14秒前
14秒前
bkagyin应助栗子采纳,获得10
15秒前
可爱的函函应助米恩采纳,获得10
15秒前
大模型应助nimeng123采纳,获得10
15秒前
科目三应助sssssssssss采纳,获得10
16秒前
16秒前
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344