A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data

弹道 计算机科学 抓住 运动学 维数(图论) 编码器 人工智能 实时计算 模拟 数学 天文 经典力学 操作系统 物理 程序设计语言 纯数学
作者
Siwen Wang,Ying Li,Hu Xing
出处
期刊:Ocean Engineering [Elsevier]
卷期号:281: 114846-114846 被引量:60
标识
DOI:10.1016/j.oceaneng.2023.114846
摘要

Ship trajectory prediction plays a key role in the early warning and safety of maritime navigation. Ship pilots must have a complete grasp of the future trajectories of ships within a certain period of time when moving the ship to effectively avoid collisions. However, the accuracy of ship trajectory prediction is a significant issue that needs to be resolved at present. In this paper, we propose a ship trajectory prediction model covering spatio-temporal awareness graph attention network (GAT) based on long short-term memory network (LSTM) to predict the future trajectories of ships in complex scenarios, named STPGL model, which adopts the design of encoder–decoder structure. The historical encoder uses an LSTM to extract the kinematic sequence features of each ship from historical trajectories in the temporal dimension. The interactive encoder summarizes the interaction features between different ships through GAT in the spatial dimension. Then, the two features are fused and fed into the decoder module to infer the future trajectories of ships. The experimental results demonstrate that STPGL model can effectively improve the prediction accuracy of short-term, medium-term and long-term ship trajectory. It has excellent performance and has a certain reference value for the advancement of unmanned ship collision avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴华余发布了新的文献求助10
1秒前
科研通AI6应助拼搏的飞薇采纳,获得10
2秒前
夏天的蜜雪冰城完成签到,获得积分10
2秒前
麦麦发布了新的文献求助10
3秒前
赵浩楠发布了新的文献求助10
3秒前
3秒前
一只小小鸟完成签到 ,获得积分10
3秒前
深情安青应助耶耶耶耶采纳,获得10
4秒前
GEE完成签到,获得积分10
4秒前
zyt完成签到,获得积分10
5秒前
5秒前
再学一分钟完成签到,获得积分10
5秒前
胡莱发布了新的文献求助10
6秒前
7秒前
wanci应助龍Ryu采纳,获得10
7秒前
wxyshare举报闾丘惜萱求助涉嫌违规
7秒前
天天快乐应助bwh采纳,获得10
8秒前
bkagyin应助谦虚低调接地气采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
感动访天完成签到,获得积分20
10秒前
wandali发布了新的文献求助200
10秒前
11秒前
幻海潮生发布了新的文献求助10
12秒前
陈展峰完成签到,获得积分10
13秒前
感动访天发布了新的文献求助10
13秒前
脑洞疼应助ling采纳,获得10
13秒前
大花2完成签到,获得积分10
14秒前
李爱国应助晴朗采纳,获得10
14秒前
15秒前
Ghiocel完成签到,获得积分10
16秒前
orixero应助酷炫大树采纳,获得10
16秒前
陈秋妮关注了科研通微信公众号
16秒前
17秒前
17秒前
恋风恋歌发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
20秒前
bwh发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091