清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Super Lightweight and Efficient SAR Image Ship Detector

计算机科学 合成孔径雷达 特征提取 目标检测 人工智能 探测器 特征(语言学) 深度学习 雷达成像 卫星 卷积神经网络 计算机视觉 雷达 遥感 实时计算 模式识别(心理学) 工程类 电信 语言学 地质学 哲学 航空航天工程
作者
Yingguang Yang,Yanwei Ju,Ziyan Zhou
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3284093
摘要

The realm of Synthetic Aperture Radar (SAR) ship detection has witnessed widespread adoption of deep learning, owing to its exceptional detection accuracy and end-to-end capabilities. Despite these advantages, the current SAR ship target detection methods still face the challenge of detecting small-scale targets and are difficult to be deployed on satellite platforms due to their complex models and huge computational effort. To overcome these problems, based on the YOLOv5 architecture, we present a super lightweight and efficient SAR ship target detection method named SLit-YOLOv5. Our proposed model comprises two essential components, IMNet and Slim-BiFPN. IMNet serves as the backbone feature extraction network, significantly enhancing the feature extraction capability while reducing the number of parameters by half. Slim-BiFPN achieves adaptive fusion of multi-scale features with fewer parameters. To validate the proposed model, we conducted an experimental evaluation on the SAR ship detection dataset (SSDD), and the results show that our SLit-YOLOv5 model outperforms the currently popular lightweight SAR ship target detection methods with high detection accuracy, low floating-point operations, and very few params.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bukeshuo发布了新的文献求助10
4秒前
sobergod完成签到 ,获得积分10
11秒前
30秒前
Akim应助悦耳十三采纳,获得10
33秒前
chiyudoubao发布了新的文献求助10
35秒前
大个应助我在这采纳,获得10
41秒前
1分钟前
1分钟前
悦耳十三发布了新的文献求助10
1分钟前
我在这发布了新的文献求助10
1分钟前
我在这完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
bukeshuo发布了新的文献求助10
2分钟前
贪玩的野狼完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
完美世界应助一杯茶采纳,获得10
4分钟前
克丽完成签到 ,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得20
5分钟前
爱静静应助科研通管家采纳,获得30
5分钟前
6分钟前
一杯茶发布了新的文献求助10
6分钟前
可爱的函函应助一杯茶采纳,获得10
6分钟前
bukeshuo发布了新的文献求助10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
doreen完成签到 ,获得积分10
7分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
JamesPei应助bukeshuo采纳,获得10
8分钟前
zly完成签到 ,获得积分10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
爱静静应助科研通管家采纳,获得10
9分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438