Optimal hinge level in opening wedge high tibial osteotomy: Biomechanical analysis using finite element method

胫骨高位截骨术 铰链 胫骨 楔形(几何) 冯·米塞斯屈服准则 材料科学 有限元法 皮质(解剖学) 骨关节炎 截骨术 口腔正畸科 解剖 结构工程 医学 数学 几何学 工程类 替代医学 病理 神经科学 生物
作者
Min Gyu Kyung,Tae Soo Bae,Hyeong Ho Baek,Moon Jong Chang,Tae Woo Kim,Seung‐Baik Kang
出处
期刊:Clinical Biomechanics [Elsevier]
卷期号:107: 106027-106027 被引量:2
标识
DOI:10.1016/j.clinbiomech.2023.106027
摘要

While the concept of a safe zone, which can minimize the hinge fracture when performing opening wedge high tibial osteotomy, has been introduced, there is a lack of understanding of the biomechanical environment at the lateral tibial cortex. This study aimed to evaluate the effect of the hinge level on the biomechanical environment at the lateral cortex of the tibia with heterogeneous finite element models.Finite element models of biplanar opening wedge high tibial osteotomy based on computed tomography images of a control subject and three patients with medial compartment knee osteoarthritis were created. In each model, three different hinge levels (proximal, middle, and distal) were set. The process of opening the gap during the operation was simulated, and the maximum von Mises stress values at the lateral tibial cortex were calculated for each hinge level and correction angle.The maximum von Mises stress value at the lateral tibial cortex was the lowest when the hinge was at the middle, while the value was the highest when the hinge was at the distal level. Furthermore, it was demonstrated that a higher correction angle yielded a higher probability of lateral tibial cortex fracture.The findings of this study demonstrate that the hinge at the point where the upper end of the articular cartilage of the proximal tibiofibular joint is located provides the least possibility of lateral tibial cortex fracture, as this is an anatomically independent position from the fibula.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sw98318发布了新的文献求助10
1秒前
wang1090完成签到,获得积分10
1秒前
奋斗的许婷2完成签到,获得积分10
1秒前
1秒前
2秒前
hll完成签到,获得积分20
2秒前
阳yang发布了新的文献求助10
2秒前
3秒前
wang1090发布了新的文献求助30
4秒前
呜呜呜呜完成签到,获得积分10
4秒前
4秒前
Riki发布了新的文献求助10
5秒前
88发布了新的文献求助10
5秒前
6秒前
充电宝应助zfy采纳,获得10
7秒前
sak完成签到,获得积分10
8秒前
Shuo Yang发布了新的文献求助20
8秒前
呜呜呜呜发布了新的文献求助10
8秒前
在水一方应助hhzz采纳,获得10
8秒前
旧是完成签到 ,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
杨小胖完成签到 ,获得积分10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
mm发布了新的文献求助10
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
shouyu29应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得30
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
归海含烟完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808