A Robust Learning Membership Scaling Fuzzy C-Means Algorithm Based on New Belief Peak

聚类分析 初始化 模糊聚类 模糊逻辑 星团(航天器) 计算机科学 人工智能 模糊集 算法 模式识别(心理学) 数学 数据挖掘 程序设计语言
作者
Qifen Yang,Gang Han,Wanyi Gao,Zhenye Yang,Shuhua Zhu,Yuhui Deng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4486-4500 被引量:3
标识
DOI:10.1109/tfuzz.2023.3286910
摘要

Fuzzy C-means clustering (FCM) has been a commonly used algorithm in fuzzy clustering for decades. However, it still faces two problems: how to determine the initial cluster center and how to determine the number of clusters. The recently proposed robust learning fuzzy C-means (RL-FCM) can automatically obtain the optimal number of clusters. However, it assumes that the initial cluster center is the entire dataset, which incurs a significant time cost and involves parameters that are also difficult to determine. Additionally, RL-FCM is unable to handle imbalanced datasets and datasets with a large span of sample attributes. Therefore, we propose a robust learning membership scaling fuzzy C-means algorithm based on new belief peaks (RL-MFCM). Within the framework of the confidence function, the neighbors of the sample points provide evidence for the sample points being cluster centers. Consequently, according to Jiang's combination rule, we consider the new belief peak as the initial cluster center. To avoid excessive interference of the mixing ratio of the cluster to the calculation of membership degree, we employ triangle inequality to improve the influence of the samples in the cluster in the clustering process. We analyze the time complexity of the proposed algorithm and conduct comparative experiments with existing fuzzy clustering algorithms on artificial and real datasets in the article. Experiments demonstrate that our proposed algorithm accurately estimates the number of clusters and exhibits superior clustering performance without needing initialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueyue发布了新的文献求助10
1秒前
科研通AI5应助徐徐618采纳,获得30
1秒前
2秒前
s子完成签到,获得积分10
2秒前
科研通AI5应助每天自然醒采纳,获得10
3秒前
嬅歆发布了新的文献求助10
5秒前
小马甲应助none采纳,获得10
6秒前
咩咩羊发布了新的文献求助10
7秒前
bc应助MizzZeus采纳,获得10
8秒前
8秒前
joeqin完成签到,获得积分10
9秒前
科研通AI5应助MYunn采纳,获得10
10秒前
11秒前
田様应助鸭鸭采纳,获得10
11秒前
12秒前
12秒前
彭于晏应助拉稀摆带采纳,获得10
13秒前
李小牛发布了新的文献求助10
13秒前
嬅歆完成签到,获得积分20
14秒前
万灵竹发布了新的文献求助20
14秒前
14秒前
一王打尽应助我爱看文献采纳,获得10
14秒前
16秒前
17秒前
Tireastani发布了新的文献求助10
17秒前
琳科研_文献完成签到,获得积分10
17秒前
aa发布了新的文献求助10
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
18秒前
所所应助科研通管家采纳,获得10
18秒前
xiepeijuan应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
SIDEsss应助科研通管家采纳,获得10
19秒前
cctv18应助科研通管家采纳,获得10
19秒前
19秒前
cctv18应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
xiepeijuan应助科研通管家采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762991
求助须知:如何正确求助?哪些是违规求助? 3307497
关于积分的说明 10140083
捐赠科研通 3022626
什么是DOI,文献DOI怎么找? 1659171
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754957