Dual Teacher: A Semisupervised Cotraining Framework for Cross-Domain Ship Detection

计算机科学 合成孔径雷达 任务(项目管理) 领域(数学分析) 人工智能 对偶(语法数字) 任务分析 标记数据 交叉验证 机器学习 数学 文学类 数学分析 艺术 经济 管理
作者
Xiangtao Zheng,Haowen Cui,Chujie Xu,Xiaoqiang Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:16
标识
DOI:10.1109/tgrs.2023.3287863
摘要

Cross-domain ship detection tries to identify Synthetic Aperture Radar (SAR) ship by adapting knowledge from labeled optical images, without labor-intensive annotations. In practical applications, a few ( e.g ., one or three samples) labeled SAR samples are available, which provides an additional supervision for SAR ships. However, the existing cross-domain methods ignore the SAR supervision (a few labeled and unlabeled SAR images), which limits their performances in a practical and under-investigated task: semi-supervised cross-domain ship detection. In this paper, a Dual Teacher framework is proposed to address the mutual interference between the optical supervision and the SAR supervision. First, both optical and SAR supervision are decomposed into two sub-tasks: cross-domain task and semi-supervised task. Then, both cross-domain task and semi-supervised task can be learned interactively in two individual teacher-student models. The teacher-student models generate pseudo-labels on unlabeled SAR images by a teacher network and fine-tune the student network. Finally, the Dual Teacher framework retrains two teacher-student models in co-training strategies. Both cross-domain dataset and semi-supervised dataset are exploited to jointly improve the pseudo-label quality. The effectiveness of the Dual Teacher framework has been fully experimentally demonstrated. The code is available at https://github.com/XiangtaoZheng/DualTeacher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助新羽采纳,获得10
1秒前
1秒前
xiaoyezi123发布了新的文献求助10
1秒前
成就初阳发布了新的文献求助10
2秒前
JingP发布了新的文献求助10
2秒前
闪闪的妙竹完成签到 ,获得积分10
3秒前
冷静水蓝发布了新的文献求助10
3秒前
wanci应助葛老四采纳,获得10
3秒前
一口蛋黄苏完成签到,获得积分20
4秒前
赘婿应助yiyi采纳,获得10
5秒前
6秒前
6秒前
隐形曼青应助淀粉采纳,获得10
6秒前
柯镇恶发布了新的文献求助10
6秒前
清风定何物完成签到,获得积分20
6秒前
6秒前
youcclucky关注了科研通微信公众号
7秒前
笑点低完成签到,获得积分20
7秒前
8秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
8秒前
8秒前
思源应助w1x2123采纳,获得10
8秒前
9秒前
9秒前
9秒前
kiki完成签到,获得积分10
9秒前
9秒前
思源应助科多采纳,获得10
9秒前
10秒前
10秒前
CodeCraft应助司空富采纳,获得10
10秒前
研友_nqaogn完成签到,获得积分10
11秒前
乾雨发布了新的文献求助10
12秒前
12秒前
kiki发布了新的文献求助10
12秒前
13秒前
所所应助冷静水蓝采纳,获得10
13秒前
火星上以柳完成签到,获得积分10
13秒前
herococa应助土木搬砖法律采纳,获得30
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230