Learning to Summarize Chinese Radiology Findings With a Pre-Trained Encoder

计算机科学 编码器 医学物理学 医学影像学 人工智能 语音识别 自然语言处理 医学 操作系统
作者
Zuowei Jiang,Xiaoyan Cai,Libin Yang,Dehong Gao,Wei Zhao,Junwei Han,Jun Liu,Dinggang Shen,Tianming Liu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 3277-3287 被引量:5
标识
DOI:10.1109/tbme.2023.3280987
摘要

Automatic radiology report summarization has been an attractive research problem towards computer-aided diagnosis to alleviate physicians' workload in recent years. However, existing methods for English radiology report summarization using deep learning techniques cannot be directly applied to Chinese radiology reports due to limitations of the related corpus. In response to this, we propose an abstractive summarization approach for Chinese chest radiology report. Our approach involves the construction of a pre-training corpus using a Chinese medical-related pre-training dataset, and the collection of Chinese chest radiology reports from Department of Radiology at the Second Xiangya Hospital as the fine-tuning corpus. To improve the initialization of the encoder, we introduce a new task-oriented pre-training objective called Pseudo Summary Objective on the pre-training corpus. We then develop a Chinese pre-trained language model called Chinese medical BERT (CMBERT), which is used to initialize the encoder and fine-tuned on the abstractive summarization task. In testing our approach on a real large-scale hospital dataset, we observe that the performance of our proposed approach achieves outstanding improvement compared with other abstractive summarization models. This highlights the effectiveness of our approach in addressing the limitations of previous methods for Chinese radiology report summarization. Overall, our proposed approach demonstrates a promising direction for the automatic summarization of Chinese chest radiology reports, offering a viable solution to alleviate physicians' workload in the field of computer-aided diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星啵啵发布了新的文献求助10
1秒前
2秒前
称心妙柏发布了新的文献求助10
3秒前
小柚子完成签到,获得积分10
3秒前
paofu发布了新的文献求助10
3秒前
3秒前
3秒前
qdd发布了新的文献求助10
3秒前
4秒前
传奇3应助圆圆采纳,获得10
5秒前
zy完成签到,获得积分20
5秒前
aa发布了新的文献求助10
6秒前
6秒前
斯文明杰发布了新的文献求助10
7秒前
zy发布了新的文献求助10
8秒前
骑骑发布了新的文献求助10
9秒前
李爱国应助qdd采纳,获得10
10秒前
小柚子发布了新的文献求助10
10秒前
万能图书馆应助王雯雯采纳,获得10
11秒前
希望天下0贩的0应助Tong采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
星空发布了新的文献求助10
14秒前
Four3210发布了新的文献求助10
14秒前
14秒前
scuter发布了新的文献求助10
15秒前
SolderOH完成签到,获得积分10
16秒前
不安芷蝶完成签到,获得积分10
16秒前
16秒前
医者发布了新的文献求助10
17秒前
缥缈的凝丹完成签到,获得积分10
20秒前
bkagyin应助Zz采纳,获得10
20秒前
20秒前
20秒前
Pengcheng发布了新的文献求助10
20秒前
sadascaqwqw发布了新的文献求助10
21秒前
酷波er应助weiyu_u采纳,获得10
22秒前
22秒前
忆夕完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794