Learning to Summarize Chinese Radiology Findings With a Pre-Trained Encoder

计算机科学 编码器 医学物理学 医学影像学 人工智能 语音识别 自然语言处理 医学 操作系统
作者
Zuowei Jiang,Xiaoyan Cai,Libin Yang,Dehong Gao,Wei Zhao,Junwei Han,Jun Liu,Dinggang Shen,Tianming Liu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 3277-3287 被引量:5
标识
DOI:10.1109/tbme.2023.3280987
摘要

Automatic radiology report summarization has been an attractive research problem towards computer-aided diagnosis to alleviate physicians' workload in recent years. However, existing methods for English radiology report summarization using deep learning techniques cannot be directly applied to Chinese radiology reports due to limitations of the related corpus. In response to this, we propose an abstractive summarization approach for Chinese chest radiology report. Our approach involves the construction of a pre-training corpus using a Chinese medical-related pre-training dataset, and the collection of Chinese chest radiology reports from Department of Radiology at the Second Xiangya Hospital as the fine-tuning corpus. To improve the initialization of the encoder, we introduce a new task-oriented pre-training objective called Pseudo Summary Objective on the pre-training corpus. We then develop a Chinese pre-trained language model called Chinese medical BERT (CMBERT), which is used to initialize the encoder and fine-tuned on the abstractive summarization task. In testing our approach on a real large-scale hospital dataset, we observe that the performance of our proposed approach achieves outstanding improvement compared with other abstractive summarization models. This highlights the effectiveness of our approach in addressing the limitations of previous methods for Chinese radiology report summarization. Overall, our proposed approach demonstrates a promising direction for the automatic summarization of Chinese chest radiology reports, offering a viable solution to alleviate physicians' workload in the field of computer-aided diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侯总应助科研通管家采纳,获得10
1秒前
wangyanling完成签到 ,获得积分10
1秒前
成就凡双应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
历sa完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
元谷雪应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
元谷雪应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
元谷雪应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
能干雁凡发布了新的文献求助10
3秒前
3秒前
丘比特应助第七个星球采纳,获得10
3秒前
曹兰兰完成签到,获得积分10
4秒前
4秒前
4秒前
ccc完成签到,获得积分10
5秒前
曹兰兰发布了新的文献求助10
7秒前
8秒前
滕侑林发布了新的文献求助10
9秒前
9秒前
9秒前
coke发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487