Learning to Summarize Chinese Radiology Findings With a Pre-Trained Encoder

计算机科学 编码器 医学物理学 医学影像学 人工智能 语音识别 自然语言处理 医学 操作系统
作者
Zuowei Jiang,Xiaoyan Cai,Libin Yang,Dehong Gao,Wei Zhao,Junwei Han,Jun Liu,Dinggang Shen,Tianming Liu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 3277-3287 被引量:5
标识
DOI:10.1109/tbme.2023.3280987
摘要

Automatic radiology report summarization has been an attractive research problem towards computer-aided diagnosis to alleviate physicians' workload in recent years. However, existing methods for English radiology report summarization using deep learning techniques cannot be directly applied to Chinese radiology reports due to limitations of the related corpus. In response to this, we propose an abstractive summarization approach for Chinese chest radiology report. Our approach involves the construction of a pre-training corpus using a Chinese medical-related pre-training dataset, and the collection of Chinese chest radiology reports from Department of Radiology at the Second Xiangya Hospital as the fine-tuning corpus. To improve the initialization of the encoder, we introduce a new task-oriented pre-training objective called Pseudo Summary Objective on the pre-training corpus. We then develop a Chinese pre-trained language model called Chinese medical BERT (CMBERT), which is used to initialize the encoder and fine-tuned on the abstractive summarization task. In testing our approach on a real large-scale hospital dataset, we observe that the performance of our proposed approach achieves outstanding improvement compared with other abstractive summarization models. This highlights the effectiveness of our approach in addressing the limitations of previous methods for Chinese radiology report summarization. Overall, our proposed approach demonstrates a promising direction for the automatic summarization of Chinese chest radiology reports, offering a viable solution to alleviate physicians' workload in the field of computer-aided diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiiiawa应助所得皆所愿采纳,获得10
2秒前
wary发布了新的文献求助10
2秒前
duanhuiyuan应助三七采纳,获得10
4秒前
4秒前
6秒前
huangweiwei完成签到,获得积分10
6秒前
7秒前
Wdwpp发布了新的文献求助30
8秒前
9秒前
jiajie_qin应助科研通管家采纳,获得20
9秒前
duanhuiyuan应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
duanhuiyuan应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
duanhuiyuan应助科研通管家采纳,获得10
9秒前
9秒前
duanhuiyuan应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
duanhuiyuan应助科研通管家采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助虚拟的凡波采纳,获得10
10秒前
无名老大应助科研通管家采纳,获得60
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
duanhuiyuan应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
duanhuiyuan应助科研通管家采纳,获得10
10秒前
duanhuiyuan应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
11秒前
lock完成签到,获得积分10
11秒前
12秒前
ke发布了新的文献求助10
12秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664