亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RPNet: Rice plant counting after tillering stage based on plant attention and multiple supervision network

均方误差 人口 数学 统计 计算机科学 农业工程 人工智能 工程类 社会学 人口学
作者
Xiaodong Bai,Susong Gu,Pichao Liu,Aiping Yang,Zhe Cai,Jianjun Wang,Jianguo Yao
出处
期刊:Crop Journal [Elsevier]
卷期号:11 (5): 1586-1594 被引量:8
标识
DOI:10.1016/j.cj.2023.04.005
摘要

Rice is a major food crop and is planted worldwide. Climatic deterioration, population growth, farmland shrinkage, and other factors have necessitated the application of cutting-edge technology to achieve accurate and efficient rice production. In this study, we mainly focus on the precise counting of rice plants in paddy field and design a novel deep learning network, RPNet, consisting of four modules: feature encoder, attention block, initial density map generator, and attention map generator. Additionally, we propose a novel loss function called RPloss. This loss function considers the magnitude relationship between different sub-loss functions and ensures the validity of the designed network. To verify the proposed method, we conducted experiments on our recently presented URC dataset, which is an unmanned aerial vehicle dataset that is quite challenged at counting rice plants. For experimental comparison, we chose some popular or recently proposed counting methods, namely MCNN, CSRNet, SANet, TasselNetV2, and FIDTM. In the experiment, the mean absolute error (MAE), root mean squared error (RMSE), relative MAE (rMAE) and relative RMSE (rRMSE) of the proposed RPNet were 8.3, 11.2, 1.2% and 1.6%, respectively, for the URC dataset. RPNet surpasses state-of-the-art methods in plant counting. To verify the universality of the proposed method, we conducted experiments on the well-know MTC and WED datasets. The final results on these datasets showed that our network achieved the best results compared with excellent previous approaches. The experiments showed that the proposed RPNet can be utilized to count rice plants in paddy fields and replace traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助FMT采纳,获得10
2秒前
Jarvis Lin完成签到,获得积分10
12秒前
28秒前
31秒前
FMT发布了新的文献求助10
36秒前
breeze完成签到,获得积分10
38秒前
ZC完成签到,获得积分10
47秒前
1分钟前
1分钟前
雷棱铄发布了新的文献求助50
1分钟前
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
科研通AI2S应助哈哈采纳,获得30
1分钟前
所所应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
勺子爱西瓜完成签到,获得积分10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
3分钟前
星辰大海应助9527采纳,获得10
4分钟前
4分钟前
藤椒辣鱼应助哈哈采纳,获得10
4分钟前
liwang9301完成签到,获得积分10
4分钟前
科目三应助科研通管家采纳,获得30
4分钟前
5分钟前
pzf完成签到 ,获得积分10
5分钟前
震动的听枫完成签到,获得积分10
5分钟前
6分钟前
熊孩子完成签到,获得积分10
6分钟前
6分钟前
edc关闭了edc文献求助
7分钟前
7分钟前
7分钟前
囚徒发布了新的文献求助10
7分钟前
7分钟前
9527发布了新的文献求助10
7分钟前
科研通AI2S应助细心的冷雪采纳,获得10
7分钟前
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
慕青应助Xxaaa采纳,获得10
8分钟前
mf2002mf完成签到 ,获得积分10
8分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440095
求助须知:如何正确求助?哪些是违规求助? 3036519
关于积分的说明 8964014
捐赠科研通 2724713
什么是DOI,文献DOI怎么找? 1494781
科研通“疑难数据库(出版商)”最低求助积分说明 690940
邀请新用户注册赠送积分活动 687419