Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach

水流 SWAT模型 水土评价工具 环境科学 分水岭 雨量计 降水 计算机科学 气候学 水文学(农业) 气象学 机器学习 地图学 地理 地质学 流域 岩土工程
作者
Shengyue Chen,Jinliang Huang,Jr‐Chuan Huang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:622: 129734-129734 被引量:10
标识
DOI:10.1016/j.jhydrol.2023.129734
摘要

There is a scarcity of streamflow data owing to the limited availability of gauge networks or delayed gauging in most parts of the world. To overcome this challenge and reproduce long-duration daily streamflow in both ungauged and poorly gauged watersheds, we proposed a novel approach that couples the process-based model Soil and Water Assessment Tool (SWAT) and the interpretable machine learning (ML) model long short-term memory (LSTM). The watershed process features generated by SWAT were combined with meteorological features as inputs for LSTM. The coupled SWAT-LSTM approach was first developed in a data-rich coastal watershed in Fujian Province, China. During the testing period, the obtained Nash-Sutcliffe efficiency coefficient (NSE) of SWAT-LSTM is 0.885, which outperformed other SWAT-MLs (e.g., backward propagation neural network, NSE = 0.843; random forest, NSE = 0.838) and calibrated SWAT (NSE = 0.706) used as comparators. Precipitation is considered the most important feature to local streamflow from a ML perspective. The pre-trained SWAT-LSTM presented satisfactory performances over 30 years of simulations in 24 hypothesized data-scarce watersheds. In ungauged watersheds, the NSE ranged from 0.474 to 0.898, with a mean of 0.685. In poorly gauged watersheds, the pre-trained SWAT-LSTM was optimized using limited local observations by introducing the transfer learning technique, and the NSE ranged from 0.591 to 0.918, with a mean of 0.760, which was markedly more accurate than the new trained models locally. Spatial proximity and physical similarity should be considered simultaneously when selecting the optimal source for data-scarce watersheds, as better performance can be achieved in less time than with tandem trained the observations of all sources. This study demonstrates that coupling SWAT with interpretable LSTM enhances the modeling confidence and provides a potential shortcut to achieving long-duration streamflow simulations in both ungauged and poorly gauged watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助熊本熊采纳,获得20
刚刚
端庄忆南完成签到,获得积分10
1秒前
咯噔完成签到,获得积分10
1秒前
2秒前
pengyang发布了新的文献求助10
2秒前
2秒前
2秒前
Phaladius发布了新的文献求助10
3秒前
Zz完成签到,获得积分10
4秒前
沐槿发布了新的文献求助10
4秒前
nullll完成签到,获得积分10
6秒前
HT发布了新的文献求助10
6秒前
int0030完成签到,获得积分10
6秒前
云_123发布了新的文献求助10
7秒前
7秒前
7秒前
晚风摇曳完成签到,获得积分10
8秒前
风趣尔琴发布了新的文献求助30
8秒前
183发布了新的文献求助20
8秒前
852应助JT采纳,获得10
12秒前
12秒前
7777777发布了新的文献求助10
12秒前
Afen完成签到,获得积分20
13秒前
13秒前
wys完成签到,获得积分10
13秒前
14秒前
充电宝应助纪问安采纳,获得10
14秒前
15秒前
16秒前
windli发布了新的文献求助10
16秒前
16秒前
几酌应助景明采纳,获得10
17秒前
wanci应助zzz采纳,获得10
17秒前
认真的书桃完成签到,获得积分10
18秒前
18秒前
18秒前
脑洞疼应助wys采纳,获得10
18秒前
jiao发布了新的文献求助10
18秒前
能能完成签到,获得积分10
19秒前
闪闪发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847