亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine and deep learning for modelling heat-health relationships

广义加性模型 分布滞后 多层感知器 梯度升压 线性模型 决策树 随机森林 人口 机器学习 环境科学 广义线性模型 人工智能 计算机科学 统计 人工神经网络 数学 环境卫生 医学
作者
Jérémie Boudreault,Céline Campagna,Fateh Chebana
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:892: 164660-164660 被引量:15
标识
DOI:10.1016/j.scitotenv.2023.164660
摘要

Extreme heat events pose a significant threat to population health that is amplified by climate change. Traditionally, statistical models have been used to model heat-health relationships, but they do not consider potential interactions between temperature-related and air pollution predictors. Artificial intelligence (AI) methods, which have gained popularity for health applications in recent years, can account for these complex and non-linear interactions, but have been underutilized in modelling heat-related health impacts. In this paper, six machine and deep learning models were considered to model the heat-mortality relationship in Montreal (Canada) and compared to three statistical models commonly used in the field. Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Single- and Multi-Layer Perceptrons (SLP and MLP), Long Short-Term Memory (LSTM), Generalized Linear and Additive Models (GLM and GAM), and Distributed Lag Non-Linear Model (DLNM) were employed. Heat exposure was characterized by air temperature, relative humidity and wind speed, while air pollution was also included in the models using five pollutants. The results confirmed that air temperature at lags of up to 3 days was the most important variable for the heat-mortality relationship in all models. NO2 concentration and relative humidity (at lags 1 to 3 days) were also particularly important. Ensemble tree-based methods (GBM and RF) outperformed other approaches to model daily mortality during summer months based on three performance criteria. However, a partial validation during two recent major heatwaves highlighted that non-linear statistical models (GAM and DLNM) and simpler decision tree may more closely reproduce the spike of mortality observed during such events. Hence, both machine learning and statistical models are relevant for modelling heat-health relationships depending on the end user goal. Such extensive comparative analysis should be extended to other health outcomes and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的羊完成签到 ,获得积分10
刚刚
乐乐应助细心的念薇采纳,获得30
刚刚
cc完成签到,获得积分10
8秒前
zzz完成签到,获得积分10
11秒前
13秒前
14秒前
Orange应助安生采纳,获得10
21秒前
高山流水发布了新的文献求助30
21秒前
ran完成签到 ,获得积分10
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得50
25秒前
非洲散打地黄完成签到 ,获得积分10
26秒前
bingbing发布了新的文献求助10
26秒前
yindi1991完成签到 ,获得积分10
29秒前
蜜HHH完成签到 ,获得积分10
31秒前
meow完成签到 ,获得积分10
45秒前
51秒前
田様应助野菜生活采纳,获得30
54秒前
土豪的摩托完成签到 ,获得积分10
57秒前
高山流水完成签到,获得积分10
1分钟前
qy完成签到,获得积分10
1分钟前
zhan20200503完成签到,获得积分10
1分钟前
1分钟前
liang完成签到 ,获得积分10
1分钟前
科研通AI5应助yyyalles采纳,获得30
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
葡萄味的果茶完成签到 ,获得积分10
1分钟前
安生发布了新的文献求助10
1分钟前
marongzhi完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伶俐绮发布了新的文献求助10
1分钟前
月下棋语完成签到 ,获得积分0
2分钟前
orixero应助77采纳,获得10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778416
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990