Machine and deep learning for modelling heat-health relationships

广义加性模型 分布滞后 多层感知器 梯度升压 线性模型 决策树 随机森林 人口 机器学习 环境科学 广义线性模型 人工智能 计算机科学 统计 人工神经网络 数学 环境卫生 医学
作者
Jérémie Boudreault,Celine Campagna,Fateh Chebana
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:892: 164660-164660 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.164660
摘要

Extreme heat events pose a significant threat to population health that is amplified by climate change. Traditionally, statistical models have been used to model heat-health relationships, but they do not consider potential interactions between temperature-related and air pollution predictors. Artificial intelligence (AI) methods, which have gained popularity for health applications in recent years, can account for these complex and non-linear interactions, but have been underutilized in modelling heat-related health impacts. In this paper, six machine and deep learning models were considered to model the heat-mortality relationship in Montreal (Canada) and compared to three statistical models commonly used in the field. Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Single- and Multi-Layer Perceptrons (SLP and MLP), Long Short-Term Memory (LSTM), Generalized Linear and Additive Models (GLM and GAM), and Distributed Lag Non-Linear Model (DLNM) were employed. Heat exposure was characterized by air temperature, relative humidity and wind speed, while air pollution was also included in the models using five pollutants. The results confirmed that air temperature at lags of up to 3 days was the most important variable for the heat-mortality relationship in all models. NO2 concentration and relative humidity (at lags 1 to 3 days) were also particularly important. Ensemble tree-based methods (GBM and RF) outperformed other approaches to model daily mortality during summer months based on three performance criteria. However, a partial validation during two recent major heatwaves highlighted that non-linear statistical models (GAM and DLNM) and simpler decision tree may more closely reproduce the spike of mortality observed during such events. Hence, both machine learning and statistical models are relevant for modelling heat-health relationships depending on the end user goal. Such extensive comparative analysis should be extended to other health outcomes and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的棒棒糖完成签到,获得积分10
刚刚
汉堡包应助ny960采纳,获得10
1秒前
自由度发布了新的文献求助10
1秒前
shirley发布了新的文献求助10
2秒前
冷酷头箍发布了新的文献求助10
2秒前
果酱君完成签到,获得积分10
2秒前
费费Queen完成签到,获得积分10
2秒前
2秒前
西灵壹完成签到,获得积分10
3秒前
l2023完成签到,获得积分10
3秒前
4秒前
4秒前
研友_LkYKJZ完成签到,获得积分10
5秒前
子车茗应助wst1988采纳,获得10
5秒前
缥缈的茗发布了新的文献求助10
5秒前
5秒前
JONY完成签到 ,获得积分10
6秒前
6秒前
wanci应助ZZ采纳,获得10
7秒前
专注的树完成签到,获得积分10
7秒前
Yoke完成签到,获得积分10
7秒前
8秒前
Ndqq完成签到,获得积分10
8秒前
你的背包完成签到,获得积分10
8秒前
cimy完成签到,获得积分10
9秒前
liyunma完成签到,获得积分10
9秒前
张起灵发布了新的文献求助10
9秒前
linger发布了新的文献求助10
10秒前
10秒前
10秒前
xiaoma发布了新的文献求助10
10秒前
智慧少女不头秃完成签到,获得积分10
10秒前
阿仁不想搞科研完成签到 ,获得积分10
10秒前
想吃芝士焗饭完成签到 ,获得积分10
10秒前
CipherSage应助大方的枕头采纳,获得10
11秒前
11秒前
迷路的小牛马完成签到,获得积分10
11秒前
生生完成签到,获得积分10
11秒前
几酌应助aguo采纳,获得10
12秒前
随影相伴完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565