Eddy Covariance CO2 Flux Gap Filling for Long Data Gaps: A Novel Framework Based on Machine Learning and Time Series Decomposition

涡度相关法 环境科学 焊剂(冶金) 均方误差 协方差 系列(地层学) 测距 大气科学 数学 气象学 统计 生态系统 计算机科学 物理 材料科学 地质学 生态学 生物 电信 古生物学 冶金
作者
Dexiang Gao,Jingyu Yao,S. Yu,Yulong Ma,Lei Li,Zhongming Gao
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (10): 2695-2695 被引量:7
标识
DOI:10.3390/rs15102695
摘要

Continuous long-term eddy covariance (EC) measurements of CO2 fluxes (NEE) in a variety of terrestrial ecosystems are critical for investigating the impacts of climate change on ecosystem carbon cycling. However, due to a number of issues, approximately 30–60% of annual flux data obtained at EC flux sites around the world are reported as gaps. Given that the annual total NEE is mostly determined by variations in the NEE data with time scales longer than one day, we propose a novel framework to perform gap filling in NEE data based on machine learning (ML) and time series decomposition (TSD). The novel framework combines the advantages of ML models in predicting NEE with meteorological and environmental inputs and TSD methods in extracting the dominant varying trends in NEE time series. Using the NEE data from 25 AmeriFlux sites, the performance of the proposed framework is evaluated under four different artificial scenarios with gap lengths ranging in length from one hour to two months. The combined approach incorporating random forest and moving average (MA-RF) is observed to exhibit better performance than other approaches at filling NEE gaps in scenarios with different gap lengths. For the scenario with a gap length of seven days, the MA-RF improves the R2 by 34% and reduces the root mean square error (RMSE) by 55%, respectively, compared to a traditional RF-based model. The improved performance of MA-RF is most likely due to the reduction in data variability and complexity of the variations in the extracted low-frequency NEE data. Our results indicate that the proposed MA-RF framework can provide improved gap filling for NEE time series. Such improved continuous NEE data can enhance the accuracy of estimations regarding the ecosystem carbon budget.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHYHYH完成签到,获得积分10
刚刚
jun完成签到,获得积分10
1秒前
淡定的安白完成签到,获得积分10
2秒前
3秒前
邓可新完成签到,获得积分10
3秒前
空城完成签到,获得积分10
3秒前
4秒前
研友_5Z4ZA5完成签到,获得积分10
5秒前
6秒前
小二郎应助zhongjr_hz采纳,获得10
6秒前
浮光完成签到,获得积分10
6秒前
Titi完成签到 ,获得积分10
7秒前
caop完成签到,获得积分10
8秒前
8秒前
Lvy完成签到,获得积分10
8秒前
xliiii完成签到,获得积分10
8秒前
英仙座发布了新的文献求助20
9秒前
机智的孤兰完成签到 ,获得积分10
9秒前
9秒前
LLLLL完成签到,获得积分10
9秒前
hobowei完成签到 ,获得积分10
9秒前
mdbbs2021完成签到,获得积分10
11秒前
WTTTTTFFFFFF发布了新的文献求助10
11秒前
唔呜無完成签到 ,获得积分10
11秒前
jiajia发布了新的文献求助10
12秒前
易燃物品完成签到,获得积分10
12秒前
Hina完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
li完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
贱小贱完成签到,获得积分10
13秒前
鱼儿完成签到,获得积分10
14秒前
asdfqwer应助luwenxuan采纳,获得10
15秒前
ttc完成签到,获得积分10
16秒前
英仙座完成签到,获得积分10
17秒前
鹿叽叽完成签到,获得积分10
17秒前
humaning完成签到,获得积分10
17秒前
agnway发布了新的文献求助10
17秒前
17秒前
WTTTTTFFFFFF完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027