Eddy Covariance CO2 Flux Gap Filling for Long Data Gaps: A Novel Framework Based on Machine Learning and Time Series Decomposition

涡度相关法 环境科学 焊剂(冶金) 均方误差 协方差 系列(地层学) 测距 大气科学 数学 气象学 统计 生态系统 计算机科学 物理 材料科学 地质学 生态学 生物 电信 古生物学 冶金
作者
Dexiang Gao,Jingyu Yao,S. Yu,Yulong Ma,Lei Li,Zhongming Gao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (10): 2695-2695 被引量:7
标识
DOI:10.3390/rs15102695
摘要

Continuous long-term eddy covariance (EC) measurements of CO2 fluxes (NEE) in a variety of terrestrial ecosystems are critical for investigating the impacts of climate change on ecosystem carbon cycling. However, due to a number of issues, approximately 30–60% of annual flux data obtained at EC flux sites around the world are reported as gaps. Given that the annual total NEE is mostly determined by variations in the NEE data with time scales longer than one day, we propose a novel framework to perform gap filling in NEE data based on machine learning (ML) and time series decomposition (TSD). The novel framework combines the advantages of ML models in predicting NEE with meteorological and environmental inputs and TSD methods in extracting the dominant varying trends in NEE time series. Using the NEE data from 25 AmeriFlux sites, the performance of the proposed framework is evaluated under four different artificial scenarios with gap lengths ranging in length from one hour to two months. The combined approach incorporating random forest and moving average (MA-RF) is observed to exhibit better performance than other approaches at filling NEE gaps in scenarios with different gap lengths. For the scenario with a gap length of seven days, the MA-RF improves the R2 by 34% and reduces the root mean square error (RMSE) by 55%, respectively, compared to a traditional RF-based model. The improved performance of MA-RF is most likely due to the reduction in data variability and complexity of the variations in the extracted low-frequency NEE data. Our results indicate that the proposed MA-RF framework can provide improved gap filling for NEE time series. Such improved continuous NEE data can enhance the accuracy of estimations regarding the ecosystem carbon budget.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Mtt采纳,获得10
刚刚
2秒前
佳期发布了新的文献求助10
2秒前
Evnnnn完成签到,获得积分10
3秒前
Ava应助mofei采纳,获得10
4秒前
5秒前
haha完成签到,获得积分10
5秒前
6秒前
卡里的乏味完成签到,获得积分10
7秒前
7秒前
害怕的小懒虫完成签到,获得积分10
7秒前
酷波er应助蔡新蕊采纳,获得10
8秒前
hucchongzi应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
yy应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
9秒前
sgs2024应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
糊糊0407发布了新的文献求助10
9秒前
炙热芷蕊发布了新的文献求助20
10秒前
10秒前
李爱国应助莫名采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
foxp3完成签到,获得积分10
14秒前
8R60d8应助shaonianyou采纳,获得10
15秒前
lyz发布了新的文献求助10
15秒前
15秒前
兜兜发布了新的文献求助10
15秒前
简单以宁2完成签到,获得积分10
16秒前
踏实天亦发布了新的文献求助10
16秒前
Jasper应助佳期采纳,获得10
17秒前
我是老大应助黄卡卡采纳,获得10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234076
求助须知:如何正确求助?哪些是违规求助? 2880478
关于积分的说明 8215669
捐赠科研通 2548044
什么是DOI,文献DOI怎么找? 1377420
科研通“疑难数据库(出版商)”最低求助积分说明 647912
邀请新用户注册赠送积分活动 623263