防反射涂料
材料科学
纳米球光刻
透射率
光电子学
纳米结构
平版印刷术
光刻
光学
纳米技术
制作
涂层
医学
物理
病理
替代医学
作者
Yulei Huang,Hao Zhou,Fangjie Wang,Congliao Yan,Yao Ju,Qiongqiong Gu,Zixiao Miao,Rui Cai,Xiaolin Sui,Ziyan Wu,Hong Zhang,Guoliang Deng,Shouhuan Zhou
标识
DOI:10.1016/j.optmat.2023.113971
摘要
ZnSe is a highly regarded material for optical windows in the infrared spectrum, where transmission efficiency is a critical factor. Traditional surface antireflective coatings have limitations that can be overcome with biomimetic moth-eye nanostructures. In this paper, we present a novel method using nanosphere lithography with polystyrene (PS) nanosphere to fabricate moth-eye nanostructures (MENS) on ZnSe surface with an exceptional antireflection effect. The parabolic profile MENS, which is challenging to fabricate through conventional methods, was directly obtained using our dry etch process. This profile outperformed other shapes like circular cones, resulting in better antireflective performance. Our experimental results matched perfectly with the modeling and demonstrated that the MENS had broadband antireflection performance in the 2–5 μm wavelength range. The maximum transmission of MENS was 82.6%, which was a significant improvement over the flat ZnSe with 71.28% transmission, achieving a 17.2% transmittance enhancement that is close to the ZnSe transmission limit. Moreover, the MENS exhibited a highly desirable hydrophobicity with a wetting angle of 114° instead of 71° on flat ZnSe. Our work displays great potential in optoelectronic devices and high-power laser applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI