Surface tension of binary and ternary mixtures mapping with ASP and UNIFAC models based on machine learning

三元运算 UNIFAC公司 表面张力 热力学 二进制数 离子液体 群贡献法 机器学习 人工智能 物理 活度系数 化学 数学 计算机科学 物理化学 有机化学 相平衡 算术 水溶液 程序设计语言 相(物质) 催化作用
作者
Jiandong Deng,Yanan Zhang,Guozhu Jia
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6)
标识
DOI:10.1063/5.0152893
摘要

Modeling predictions of surface tension for binary and ternary liquid mixtures is difficult. In this work, we propose a machine learning model to accurately predict the surface tension of binary mixtures of organic solvents-ionic liquids and ternary mixtures of organic solvents-ionic liquids–water and analytically characterize the proposed model. In total, 1593 binary mixture data points and 216 ternary mixture data points were collected to develop the machine learning model. The model was developed by combining machine learning algorithms, UNIFAC (UNIversal quasi-chemical Functional group Activity Coefficient) and ASP (Abraham solvation parameter). UNIFAC parameters are used to describe ionic liquids, and ASP is used to describe organic solvents. The effect of each parameter on the surface tension is characterized by SHAP (SHapley Additive exPlanation). We considered support vector regression, artificial neural network, K nearest neighbor regression, random forest regression, LightGBM (light gradient boosting machine), and CatBoost (categorical boosting) algorithms. The results show that the CatBoost algorithm works best, MAE = 0.3338, RMSE = 0.7565, and R2 = 0.9946. The SHAP results show that the surface tension of the liquid decreases as the volume and surface area of the anion increase. This work not only accurately predicts the surface tension of binary and ternary mixtures, but also provides illuminating insight into the microscopic interactions between physical empirical models and physical and chemical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇奇完成签到,获得积分10
1秒前
超级砖家完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
华仔应助HJJ采纳,获得10
5秒前
怀玉完成签到,获得积分10
5秒前
罐罐发布了新的文献求助10
7秒前
aa发布了新的文献求助10
7秒前
7秒前
共享精神应助Tidy采纳,获得10
8秒前
医路潜行发布了新的文献求助10
8秒前
evelyn完成签到 ,获得积分10
9秒前
子訡发布了新的文献求助10
10秒前
三岁完成签到,获得积分10
11秒前
科目三应助无私语儿采纳,获得10
12秒前
12秒前
传奇3应助陶醉黑猫采纳,获得10
15秒前
15秒前
深情安青应助风华正茂采纳,获得10
15秒前
bkagyin应助ttttt采纳,获得10
18秒前
paul完成签到,获得积分10
18秒前
唐文硕发布了新的文献求助10
18秒前
於艳完成签到,获得积分10
19秒前
林志迎发布了新的文献求助10
20秒前
育三杯清栀完成签到 ,获得积分10
20秒前
23秒前
现代的访曼应助医路潜行采纳,获得10
23秒前
24秒前
25秒前
Hello应助文章必发采纳,获得10
26秒前
顾矜应助唐文硕采纳,获得10
27秒前
狸狸发布了新的文献求助30
27秒前
科目三应助怕孤独的谷蓝采纳,获得10
27秒前
28秒前
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
清爽妙竹应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
清爽妙竹应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377