生物素化
DNA连接酶
生物素
蛋白质组
链霉亲和素
蛋白质组学
生物化学
计算生物学
化学
生物
分子生物学
酶
基因
作者
Irene Santos‐Barriopedro,Guido van Mierlo,Michiel Vermeulen
标识
DOI:10.1038/s41596-022-00748-w
摘要
Proximity biotinylation is a commonly used method to identify the in vivo proximal proteome for proteins of interest. This technology typically relies on fusing a bait protein to a biotin ligase using overexpression or clustered regularly interspaced short palindromic repeats (CRISPR)-based tagging, thus prohibiting the use of such assays in cell types that are difficult to transfect or transduce. We recently developed an ‘off-the-shelf’ proximity biotinylation method that makes use of a recombinant enzyme consisting of the biotin ligase TurboID fused to the antibody-recognizing moiety Protein A. In this method, a bait-specific antibody and the ProteinA-Turbo enzyme are consecutively added to permeabilized fixed or unfixed cells. Following incubation, during which ProteinA-Turbo antibody–antigen complexes are formed, unbound molecules are washed away, after which bait-proximal biotinylation is triggered by the addition of exogenous biotin. Finally, biotinylated proteins are enriched from crude lysates using streptavidin beads followed by mass spectrometry-based protein identification. In principle, any scientist can perform this protocol within 3 days, although generating the proteomics data requires access to a high-end liquid chromatography–mass spectrometry setup. Data analysis and data visualization are relatively straightforward and can be performed using any type of software that converts raw mass spectrometry spectra files into identified and quantified proteins. The protocol has been optimized for nuclear targets but may also be adapted to other subcellular regions of interest.
科研通智能强力驱动
Strongly Powered by AbleSci AI