Development of an additively manufactured metastable beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield strength

等轴晶 材料科学 冶金 微观结构 合金 钛合金 极限抗拉强度 产量(工程) 晶界 复合材料
作者
Yanjun Liu,Longbin Xu,Chunlei Qiu
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:60: 103208-103208 被引量:26
标识
DOI:10.1016/j.addma.2022.103208
摘要

Metastable β titanium alloys usually suffer from relatively low yield strengths, which restricts their applications as a structural material. Additive manufacturing (AM), due to its extremely high cooling rates, can generate a refined microstructure that is beneficial to yield strength. However, the intrinsic steep thermal gradients within melt pools often lead to development of columnar grains that can result in mechanical anisotropy. To address these issues, we propose to use potent β-stabilizing elements with large growth restriction factors as the main solute elements in Ti, specifically Fe and Co. d-electron theory is also used to design the detailed compositions of the new titanium alloys for AM. A novel metastable titanium alloy, Ti-xFe-xCo-1Mo (1.5< x <3.5 at%), is thus developed by laser powder bed fusion (L-PBF). With process optimization, the L-PBF-processed alloy was found to contain fully equiaxed β grains embedded with α laths and ω precipitates and the grain boundaries decorated by Ti 2 Co precipitates. The matrix consists of a certain number of micro-sized β flecks and a high density of Fe and Mo atomic clusters. Upon solution treatment (ST), the microstructure turned into equiaxed β grains embedded with ultrafine ω precipitates and Mo atomic clusters. While the L-PBF-processed alloy shows poor tensile properties probably due to the presence of isothermal ω precipitates, the L-PBF-ST-processed alloy demonstrates an unprecedented yield strength of 1.2 GPa and a decent elongation of 10~12%. The alloy deformed by dislocation slipping and failed in a ductile fracture mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FashionBoy应助gogoyoco采纳,获得10
3秒前
可爱的函函应助ZQ666采纳,获得10
4秒前
肖沐发布了新的文献求助10
6秒前
yyp完成签到,获得积分10
7秒前
8秒前
9秒前
gogoyoco完成签到,获得积分10
9秒前
悠悠小土豆完成签到,获得积分10
11秒前
香蕉觅云应助fiore采纳,获得10
11秒前
思源应助nino0617采纳,获得10
11秒前
12秒前
12秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
wanci应助fhl采纳,获得10
17秒前
潺潺流水完成签到,获得积分10
17秒前
18秒前
Akim应助HYI采纳,获得10
19秒前
yyygc完成签到,获得积分10
19秒前
moon发布了新的文献求助30
20秒前
干破天发布了新的文献求助10
20秒前
深情安青应助范冰冰采纳,获得10
20秒前
嗯哼哈哈发布了新的文献求助10
20秒前
20秒前
20秒前
小叶子发布了新的文献求助10
20秒前
澡雪发布了新的文献求助10
21秒前
青山落日秋月春风完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
24秒前
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496