Development of an additively manufactured metastable beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield strength

等轴晶 材料科学 冶金 微观结构 合金 钛合金 极限抗拉强度 产量(工程) 晶界 复合材料
作者
Yanjun Liu,Longbin Xu,Chunlei Qiu
出处
期刊:Additive manufacturing [Elsevier]
卷期号:60: 103208-103208 被引量:26
标识
DOI:10.1016/j.addma.2022.103208
摘要

Metastable β titanium alloys usually suffer from relatively low yield strengths, which restricts their applications as a structural material. Additive manufacturing (AM), due to its extremely high cooling rates, can generate a refined microstructure that is beneficial to yield strength. However, the intrinsic steep thermal gradients within melt pools often lead to development of columnar grains that can result in mechanical anisotropy. To address these issues, we propose to use potent β-stabilizing elements with large growth restriction factors as the main solute elements in Ti, specifically Fe and Co. d-electron theory is also used to design the detailed compositions of the new titanium alloys for AM. A novel metastable titanium alloy, Ti-xFe-xCo-1Mo (1.5< x <3.5 at%), is thus developed by laser powder bed fusion (L-PBF). With process optimization, the L-PBF-processed alloy was found to contain fully equiaxed β grains embedded with α laths and ω precipitates and the grain boundaries decorated by Ti 2 Co precipitates. The matrix consists of a certain number of micro-sized β flecks and a high density of Fe and Mo atomic clusters. Upon solution treatment (ST), the microstructure turned into equiaxed β grains embedded with ultrafine ω precipitates and Mo atomic clusters. While the L-PBF-processed alloy shows poor tensile properties probably due to the presence of isothermal ω precipitates, the L-PBF-ST-processed alloy demonstrates an unprecedented yield strength of 1.2 GPa and a decent elongation of 10~12%. The alloy deformed by dislocation slipping and failed in a ductile fracture mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
堂yt发布了新的文献求助10
刚刚
液氧完成签到,获得积分10
刚刚
1秒前
YH完成签到 ,获得积分10
1秒前
Wang完成签到,获得积分10
1秒前
1秒前
2秒前
bkagyin应助单薄紫菜采纳,获得10
2秒前
研友_LJaro8完成签到,获得积分10
2秒前
pz_11发布了新的文献求助10
2秒前
3秒前
JamesPei应助Zxc采纳,获得10
3秒前
3秒前
顺利的爆米花完成签到 ,获得积分10
3秒前
三年两篇以上SCI完成签到 ,获得积分20
3秒前
3秒前
3秒前
3秒前
橙子完成签到,获得积分10
4秒前
freedom发布了新的文献求助10
4秒前
4秒前
小桃子发布了新的文献求助30
5秒前
zz发布了新的文献求助100
5秒前
量子星尘发布了新的文献求助10
5秒前
不安念双完成签到,获得积分10
6秒前
明理的之云完成签到,获得积分10
6秒前
6秒前
锂离子发布了新的文献求助10
7秒前
7秒前
传奇3应助疯狂大脑壳采纳,获得10
7秒前
junhuihe发布了新的文献求助10
8秒前
liyang发布了新的文献求助10
8秒前
堂yt完成签到,获得积分10
9秒前
张小祎完成签到,获得积分10
9秒前
9秒前
小遇完成签到 ,获得积分10
9秒前
9秒前
aoc发布了新的文献求助10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132