E-DU: Deep neural network for multimodal medical image segmentation based on semantic gap compensation

计算机科学 人工智能 分割 编码器 模式识别(心理学) 水准点(测量) 特征(语言学) 卷积神经网络 图像分割 语义鸿沟 卷积(计算机科学) 深度学习 计算机视觉 人工神经网络 图像(数学) 图像检索 语言学 哲学 大地测量学 地理 操作系统
作者
Haojia Wang,Xicheng Chen,Rui Yu,Zeliang Wei,Tianhua Yao,Chengcheng Gao,Yang Li,Zhenyan Wang,Dong Yi,Yazhou Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106206-106206 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.106206
摘要

U-Net includes encoder, decoder and skip connection structures. It has become the benchmark network in medical image segmentation. However, the direct fusion of low-level and high-level convolution features with semantic gaps by traditional skip connections may lead to problems such as fuzzy generated feature maps and target region segmentation errors.We use spatial enhancement filtering technology to compensate for the semantic gap and propose an enhanced dense U-Net (E-DU), aiming to apply it to multimodal medical image segmentation to improve the segmentation performance and efficiency.Before combining encoder and decoder features, we replace the traditional skip connection with a multiscale denoise enhancement (MDE) module. The encoder features need to be deeply convolved by the spatial enhancement filter and then combined with the decoder features. We propose a simple and efficient deep full convolution network structure E-DU, which can not only fuse semantically various features but also denoise and enhance the feature map.We performed experiments on medical image segmentation datasets with seven image modalities and combined MDE with various baseline networks to perform ablation studies. E-DU achieved the best segmentation results on evaluation indicators such as DSC on the U-Net family, with DSC values of 97.78, 97.64, 95.31, 94.42, 94.93, 98.85, and 98.38 (%), respectively. The addition of the MDE module to the attention mechanism network improves segmentation performance and efficiency, reflecting its generalization performance. In comparison to advanced methods, our method is also competitive.Our proposed MDE module has a good segmentation effect and operating efficiency, and it can be easily extended to multiple modal medical segmentation datasets. Our idea and method can achieve clinical multimodal medical image segmentation and make full use of image information to provide clinical decision support. It has great application value and promotion prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
VVhahaha发布了新的文献求助10
1秒前
2秒前
李新源发布了新的文献求助30
2秒前
2秒前
Q_Q应助楚寅采纳,获得10
3秒前
55555发布了新的文献求助100
3秒前
eiuba发布了新的文献求助10
4秒前
Sunnie关注了科研通微信公众号
4秒前
一一发布了新的文献求助10
4秒前
科研通AI2S应助lilac采纳,获得10
4秒前
来自山灵的风完成签到,获得积分10
5秒前
英俊的铭应助头大采纳,获得10
5秒前
Cu完成签到,获得积分10
5秒前
5秒前
李茹蕾发布了新的文献求助10
5秒前
Peppermint完成签到,获得积分10
5秒前
杰瑞完成签到,获得积分10
6秒前
6秒前
7秒前
话家完成签到,获得积分10
7秒前
7秒前
7秒前
可爱的函函应助Gaojie Yan采纳,获得10
8秒前
9秒前
jason发布了新的文献求助10
9秒前
坚强亦丝应助laoli2022采纳,获得10
9秒前
隐形曼青应助小鱼干采纳,获得10
10秒前
浪里白条完成签到,获得积分10
10秒前
pphss完成签到,获得积分10
10秒前
搜集达人应助犹豫小懒猪采纳,获得10
11秒前
Bing发布了新的文献求助10
11秒前
猪肉发布了新的文献求助10
11秒前
科研通AI2S应助杰瑞采纳,获得10
11秒前
12秒前
田様应助sophie采纳,获得10
13秒前
甜滋滋发布了新的文献求助10
13秒前
13秒前
Singularity应助漂亮土豆采纳,获得10
14秒前
hhh发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410884
求助须知:如何正确求助?哪些是违规求助? 3014427
关于积分的说明 8863234
捐赠科研通 2701774
什么是DOI,文献DOI怎么找? 1481273
科研通“疑难数据库(出版商)”最低求助积分说明 684760
邀请新用户注册赠送积分活动 679281