Predictive Nature of High-Throughput Assays in ADC Formulation Screening

吞吐量 高通量筛选 计算机科学 化学 色谱法 生物化学 电信 无线
作者
Brittney J. Mills,Malika P Godamudunage,Siyuan Ren,Malabika Laha
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:112 (7): 1821-1831 被引量:5
标识
DOI:10.1016/j.xphs.2023.03.021
摘要

Utilization of high-throughput biophysical screening techniques during early screening studies is warranted due to the limited amount of material and large number of samples. But the predictability of the data to longer-term storage stability is critical as the high-throughput methods assist in defining the design space for the longer-term studies. In this study, the biophysical properties of two ADCs in 16 formulation conditions were evaluated using high-throughput techniques. Conformational stability and colloidal stability were evaluated by determining Tm values, kD, B22, and Tagg. In addition, the samples were placed on stability and the extent of aggregate formation over the 8-week interval was determined. The rank order of the 16 different formulations in the high-throughput assays was compared to the rank order observed during the stability studies to assess the predictive capabilities of the screening methods. It was demonstrated that similar rank orders can be expected between high-throughput physical stability indicating assays such as Tagg and B22 and traditional aggregation by SEC data, whereas conformational stability read-outs (Tm) are less predictive. In addition, the high-throughput assays appropriately identified the poor performing formulation conditions, which is ultimately what is desired of screening assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助kk采纳,获得10
刚刚
善学以致用应助mrz采纳,获得20
1秒前
大胆听莲完成签到 ,获得积分10
2秒前
11111完成签到,获得积分10
3秒前
3秒前
充电宝应助luo采纳,获得10
3秒前
帅气的小翟完成签到,获得积分10
5秒前
闪闪的乐蕊完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
1774181866发布了新的文献求助10
7秒前
wjy321发布了新的文献求助10
8秒前
李小聪完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
852应助研友_ndvWy8采纳,获得10
12秒前
14秒前
凡凡应助虚心的小兔子采纳,获得10
14秒前
FashionBoy应助欢乐通采纳,获得10
15秒前
15秒前
CodeCraft应助泥巴采纳,获得10
16秒前
恰恰恰发布了新的文献求助10
16秒前
16秒前
黄则已发布了新的文献求助10
17秒前
香蕉觅云应助sfliufighting采纳,获得10
18秒前
Liu完成签到 ,获得积分10
19秒前
20秒前
佛说一缘完成签到 ,获得积分10
21秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
魁梧的听荷完成签到 ,获得积分10
24秒前
25秒前
帽子戏法发布了新的文献求助10
25秒前
zhuling发布了新的文献求助10
27秒前
27秒前
27秒前
聪明的老太完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329