Concentration-Gradient Nb-Doping in a Single-Crystal LiNi0.83Co0.12Mn0.05O2 Cathode for High-Rate and Long-Cycle Lithium-Ion Batteries

材料科学 阴极 电解质 溶解 扩散 氧化物 电化学 化学工程 分析化学(期刊) 化学物理 无机化学 电极 物理化学 冶金 热力学 化学 物理 色谱法 工程类
作者
Wu Hai,Xing Zhou,Chao Yang,Dawei Xu,Yuhui Zhu,Tengfei Zhou,Sen Xin,Ya You
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (15): 18828-18835 被引量:33
标识
DOI:10.1021/acsami.2c23076
摘要

Single-crystalline nickel-rich layered oxides are promising cathode materials for building high-energy lithium-ion batteries because of alleviated particle cracking and irreversible phase transitions upon cycling, compared with their polycrystalline counterparts. Under a high state of charge, parasitic reactions tend to occur at the cathode-electrolyte interface, which could result in sluggish Li-ion diffusion kinetics and quickly faded electrochemical performance of cathodes. In this work, a concentration-gradient niobium-doping strategy was applied to modify the single-crystal LiNi0.83Co0.12Mn0.05O2 cathode, with Nb concentration decreasing linearly from the surface to the core of the particle. As a result, the Nb-rich surface functions as an electrochemically active protective layer against electrolyte corrosion and transition metal dissolution, while the Nb-deficient core contributes to a higher capacity. The linear concentration gradient also minimizes structural transition from the surface to the core and helps to maintain structural integrity during repeated Li (de)intercalation. In addition, Nb-doping also assists to alleviate Li+/Ni2+ mixing and increases the interlayer distance to enable faster Li-ion diffusion kinetics. By taking these advantages, the Nb-doped cathode materials (containing 1.0 atom% Nb) demonstrate a high reversible capacity, a high capacity retention, and improved rate capabilities. This work provides a general and facile approach to improve the storage performance of layered-oxide cathode materials by rationally tuning the bulk structure and interface with the electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李繁蕊发布了新的文献求助10
1秒前
暴躁的嘉懿完成签到,获得积分10
1秒前
LZH发布了新的文献求助20
1秒前
领导范儿应助rosexu采纳,获得10
2秒前
华生完成签到,获得积分10
3秒前
3秒前
Miracle关注了科研通微信公众号
3秒前
通~发布了新的文献求助10
4秒前
4秒前
Apple完成签到,获得积分10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
医学僧发布了新的文献求助30
5秒前
Sheila完成签到 ,获得积分10
5秒前
sweetbearm应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
prosperp应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
执着夏岚完成签到 ,获得积分10
7秒前
CipherSage应助苏州小北采纳,获得10
7秒前
www完成签到,获得积分20
8秒前
汉关发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808