Concentration-Gradient Nb-Doping in a Single-Crystal LiNi0.83Co0.12Mn0.05O2 Cathode for High-Rate and Long-Cycle Lithium-Ion Batteries

材料科学 阴极 电解质 溶解 扩散 氧化物 电化学 化学工程 分析化学(期刊) 化学物理 无机化学 电极 物理化学 冶金 热力学 化学 物理 色谱法 工程类
作者
Wu Hai,Xing Zhou,Chao Yang,Dawei Xu,Yuhui Zhu,Tengfei Zhou,Sen Xin,Ya You
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (15): 18828-18835 被引量:33
标识
DOI:10.1021/acsami.2c23076
摘要

Single-crystalline nickel-rich layered oxides are promising cathode materials for building high-energy lithium-ion batteries because of alleviated particle cracking and irreversible phase transitions upon cycling, compared with their polycrystalline counterparts. Under a high state of charge, parasitic reactions tend to occur at the cathode-electrolyte interface, which could result in sluggish Li-ion diffusion kinetics and quickly faded electrochemical performance of cathodes. In this work, a concentration-gradient niobium-doping strategy was applied to modify the single-crystal LiNi0.83Co0.12Mn0.05O2 cathode, with Nb concentration decreasing linearly from the surface to the core of the particle. As a result, the Nb-rich surface functions as an electrochemically active protective layer against electrolyte corrosion and transition metal dissolution, while the Nb-deficient core contributes to a higher capacity. The linear concentration gradient also minimizes structural transition from the surface to the core and helps to maintain structural integrity during repeated Li (de)intercalation. In addition, Nb-doping also assists to alleviate Li+/Ni2+ mixing and increases the interlayer distance to enable faster Li-ion diffusion kinetics. By taking these advantages, the Nb-doped cathode materials (containing 1.0 atom% Nb) demonstrate a high reversible capacity, a high capacity retention, and improved rate capabilities. This work provides a general and facile approach to improve the storage performance of layered-oxide cathode materials by rationally tuning the bulk structure and interface with the electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liker发布了新的文献求助10
刚刚
1秒前
wangking完成签到,获得积分20
1秒前
2秒前
我是老大应助微弱de胖头采纳,获得10
2秒前
慈祥的丹寒完成签到 ,获得积分10
3秒前
太叔白易完成签到,获得积分10
4秒前
5秒前
chennn完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助荷包蛋采纳,获得10
6秒前
pluto应助流沙无言采纳,获得10
6秒前
研友_nv4M28完成签到,获得积分0
7秒前
hanwei_mei完成签到,获得积分10
7秒前
zz应助zhuosht采纳,获得10
8秒前
9秒前
正义的小怪兽完成签到,获得积分10
11秒前
Tzzl0226发布了新的文献求助150
12秒前
酷波er应助苗条台灯采纳,获得10
12秒前
朴实的墨镜完成签到,获得积分10
13秒前
chennn发布了新的文献求助10
13秒前
听话的萤完成签到,获得积分10
13秒前
爆米花应助谦让芷蕾采纳,获得10
14秒前
搜集达人应助碧蓝的觅露采纳,获得10
14秒前
科研小菜鸡完成签到 ,获得积分10
14秒前
吕圆圆圆啊完成签到,获得积分10
16秒前
bkagyin应助Maroma采纳,获得10
17秒前
实验好难应助思思采纳,获得10
18秒前
华仔应助AtoZ采纳,获得10
20秒前
21秒前
22秒前
22秒前
22秒前
maybe豪完成签到,获得积分10
22秒前
23秒前
BPX完成签到,获得积分10
23秒前
整齐碧玉发布了新的文献求助10
23秒前
吴咪完成签到,获得积分20
24秒前
顾矜应助苗条台灯采纳,获得10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759451
求助须知:如何正确求助?哪些是违规求助? 3302513
关于积分的说明 10122847
捐赠科研通 3016945
什么是DOI,文献DOI怎么找? 1656732
邀请新用户注册赠送积分活动 790616
科研通“疑难数据库(出版商)”最低求助积分说明 753962