亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning to Predict Three Types of Outcomes After Traumatic Brain Injury Using Data at Admission: A Multi-Center Study for Development and Validation

创伤性脑损伤 逻辑回归 格拉斯哥结局量表 医学 开颅术 急诊科 创伤中心 机器学习 格拉斯哥昏迷指数 人工智能 回顾性队列研究 外科 计算机科学 内科学 精神科
作者
Kazuya Matsuo,Hideo Aihara,Yoshie Hara,Akitsugu Morishita,Yoshio Sakagami,Shigeru Miyake,Shotaro Tatsumi,Satoshi Ishihara,Yoshiki Tohma,Haruo Yamashita,Takashi Sasayama
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert]
卷期号:40 (15-16): 1694-1706 被引量:2
标识
DOI:10.1089/neu.2022.0515
摘要

The difficulty of accurately identifying patients who would benefit from promising treatments makes it challenging to prove the efficacy of novel treatments for traumatic brain injury (TBI). Although machine learning is being increasingly applied to this task, existing binary outcome prediction models are insufficient for the effective stratification of TBI patients. The aim of this study was to develop an accurate 3-class outcome prediction model to enable appropriate patient stratification. To this end, retrospective balanced data of 1200 blunt TBI patients admitted to six Japanese hospitals from January 2018 onwards (200 consecutive cases at each institution) were used for model training and validation. We incorporated 21 predictors obtained in the emergency department, including age, sex, six clinical findings, four laboratory parameters, eight computed tomography findings, and an emergency craniotomy. We developed two machine learning models (XGBoost and dense neural network) and logistic regression models to predict 3-class outcomes based on the Glasgow Outcome Scale-Extended (GOSE) at discharge. The prediction models were developed using a training dataset with n = 1000, and their prediction performances were evaluated over two validation rounds on a validation dataset (n = 80) and a test dataset (n = 120) using the bootstrap method. Of the 1200 patients in aggregate, the median patient age was 71 years, 199 (16.7%) exhibited severe TBI, and emergency craniotomy was performed on 104 patients (8.7%). The median length of stay was 13.0 days. The 3-class outcomes were good recovery/moderate disability for 709 patients (59.1%), severe disability/vegetative state in 416 patients (34.7%), and death in 75 patients (6.2%). XGBoost model performed well with 69.5% sensitivity, 82.5% accuracy, and an area under the receiver operating characteristic curve of 0.901 in the final validation. In terms of the receiver operating characteristic curve analysis, the XGBoost outperformed the neural network-based and logistic regression models slightly. In particular, XGBoost outperformed the logistic regression model significantly in predicting severe disability/vegetative state. Although each model predicted favorable outcomes accurately, they tended to miss the mortality prediction. The proposed machine learning model was demonstrated to be capable of accurate prediction of in-hospital outcomes following TBI, even with the three GOSE-based categories. As a result, it is expected to be more impactful in the development of appropriate patient stratification methods in future TBI studies than conventional binary prognostic models. Further, outcomes were predicted based on only clinical data obtained from the emergency department. However, developing a robust model with consistent performance in diverse scenarios remains challenging, and further efforts are needed to improve generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jayden完成签到 ,获得积分10
14秒前
17秒前
23秒前
29秒前
44秒前
狒狒发布了新的文献求助10
1分钟前
狒狒完成签到,获得积分10
1分钟前
1分钟前
GAOGONGZI完成签到,获得积分10
1分钟前
1分钟前
阿北发布了新的文献求助10
1分钟前
Airi发布了新的文献求助10
1分钟前
Wang完成签到 ,获得积分20
2分钟前
2分钟前
Airi完成签到,获得积分10
2分钟前
Milo完成签到,获得积分10
2分钟前
完美耦合发布了新的文献求助10
2分钟前
含糊的茹妖完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
实力不允许完成签到 ,获得积分10
4分钟前
完美耦合完成签到,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
5分钟前
Owen应助zz采纳,获得10
10分钟前
小二郎应助科研通管家采纳,获得30
10分钟前
LIVE完成签到,获得积分10
10分钟前
12分钟前
12分钟前
lizhang发布了新的文献求助10
12分钟前
hilygogo完成签到,获得积分10
12分钟前
露露完成签到,获得积分10
15分钟前
houha233发布了新的文献求助10
15分钟前
15分钟前
宁异勿同完成签到,获得积分10
16分钟前
16分钟前
科研通AI2S应助踏实的芸遥采纳,获得30
16分钟前
17分钟前
17分钟前
poki完成签到 ,获得积分10
17分钟前
zz发布了新的文献求助10
17分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176