Spatiotemporal Heterogeneity of De Novo Lipogenesis in Fixed and Living Single Cells

脂肪生成 脂滴 脂质代谢 脂肪细胞 化学 生物物理学 细胞 生物 生物化学 内科学 内分泌学 脂肪组织 医学
作者
Sydney O. Shuster,Michael J. Burke,Caitlin M. Davis
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (13): 2918-2926 被引量:14
标识
DOI:10.1021/acs.jpcb.2c08812
摘要

De novo lipogenesis (DNL) is a critical metabolic process that provides the majority of lipids for adipocyte and liver tissue. In cancer, obesity, type II diabetes, and nonalcoholic fatty liver disease DNL becomes dysregulated. A deeper understanding of the rates and of subcellular organization of DNL is necessary for identifying how this dysregulation occurs and varies across individuals and diseases. However, DNL is difficult to study inside the cell because labeling lipids and their precursors is not trivial. Existing techniques either can only measure parts of DNL, like glucose uptake, or do not provide spatiotemporal resolution. Here, we track DNL in space and time as isotopically labeled glucose is converted to lipids in adipocytes using optical photothermal infrared microscopy (OPTIR). OPTIR provides submicron resolution infrared imaging of the glucose metabolism in both living and fixed cells while also reporting on the identity of lipids and other biomolecules. We show significant incorporation of the labeled carbons into triglycerides in lipid droplets over the course of 72 h. Live cells had better preservation of lipid droplet morphology, but both showed similar DNL rates. Rates of DNL, as measured by the ratio of 13C-labeled lipid to 12C-labeled lipid, were heterogeneous, with differences within and between lipid droplets and from cell to cell. The high rates of DNL measured in adipocyte cells match upregulated rates of DNL previously reported in PANC1 pancreatic cancer cells. Taken together, our findings support a model where DNL is locally regulated to meet energy needs within cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的战斗机完成签到,获得积分10
刚刚
科研人发布了新的文献求助10
1秒前
hl完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI5应助dingdong采纳,获得10
2秒前
Jasper应助幸福胡萝卜采纳,获得10
2秒前
爱看文献的小羽毛完成签到,获得积分10
2秒前
3秒前
song99发布了新的文献求助10
3秒前
3秒前
juan完成签到 ,获得积分10
3秒前
徐安琪完成签到,获得积分10
4秒前
小蘑菇应助深爱不疑采纳,获得200
4秒前
头发乱了完成签到,获得积分10
4秒前
4秒前
格兰兔米兔完成签到,获得积分10
4秒前
4秒前
4秒前
Luna完成签到 ,获得积分10
5秒前
汪鸡毛发布了新的文献求助10
5秒前
积极寻梅发布了新的文献求助10
6秒前
6秒前
tu发布了新的文献求助30
7秒前
在水一方应助云_123采纳,获得10
7秒前
科研小民工应助晚安采纳,获得50
7秒前
木木完成签到,获得积分10
7秒前
8秒前
8秒前
晨安完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
爆米花应助特兰克斯采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
葛辉辉发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762