已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Effect of User Decision and Environmental Factors on Computationally Derived River Networks

数字高程模型 水文学 仰角(弹道) 支流 环境科学 水文学(农业) 遥感 计算机科学 地图学 地理 地质学 工程类 岩土工程 结构工程
作者
N. R. Olsen,Ahmad A. Tavakoly,K. A. McCormack,Heather K Levin
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:128 (4) 被引量:2
标识
DOI:10.1029/2022jf006873
摘要

Abstract Despite recent developments of continental and global vector‐based river networks, the impact of digital elevation model selection, stream initiation area and environmental parameters including land cover, and elevation, remain unexplored at large scales. To fill this gap, vector river networks based on multiple data sets are compared to the National Hydrography Dataset Plus High Resolution flowpaths. Using TauDEM, river networks from three conditioned Digital Elevation Models (DEMs) were produced at multiple thresholds for stream initiation. OpenCLC, a software package for the comparison of hydrographic networks, was used to compare digital hydrographic networks with the NHDPlus HR flowlines data set over more than 35,00 basins. Networks derived from the 12 m Tandem‐X data set showed similar results as the MERIT Hydro with 90 m resolution until the application of a sophisticated stream burning methodology improved performance significantly. The optimal CLC is obtained at 1‐km threshold for Hydrological Data and Maps Based on SHuttle Elevation Derivatives at multiple Scales and MERIT Hydro‐gridded data sets, quality declined with smaller thresholds. Spatial patterns in river‐network quality were observed and were associated with dominant land classification, with greater forest coverage associated with significantly better quality and greater wetland presence with lower quality networks. This study demonstrates user selection of DEM, and threshold combined with environmental factors (vegetation, water coverage, and precipitation) play a significant role in river‐network quality compared to the DEM selection, and that without sophisticated conditioning, a higher resolution base DEM does not necessarily produce a better river network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无私的梦凡完成签到,获得积分10
1秒前
GaN完成签到,获得积分10
2秒前
皮皮完成签到 ,获得积分20
2秒前
ycccSZU发布了新的文献求助10
3秒前
yar完成签到 ,获得积分10
3秒前
科研通AI5应助包李采纳,获得10
5秒前
7秒前
8秒前
10秒前
华仔应助ton采纳,获得10
12秒前
13秒前
嘦彵发布了新的文献求助10
14秒前
Wells完成签到,获得积分10
15秒前
17秒前
今后应助柯彦采纳,获得10
21秒前
小羊完成签到 ,获得积分10
23秒前
逆旅发布了新的文献求助10
24秒前
25秒前
orixero应助丁丽娜采纳,获得10
28秒前
ton发布了新的文献求助10
29秒前
jerry完成签到,获得积分10
29秒前
Yatpome发布了新的文献求助20
33秒前
淡然的舞仙完成签到 ,获得积分10
33秒前
alanbike完成签到,获得积分10
33秒前
37秒前
丁丽娜发布了新的文献求助10
43秒前
李健的小迷弟应助PhD_Lee73采纳,获得10
43秒前
逆旅完成签到,获得积分10
45秒前
努力的淼淼完成签到 ,获得积分10
46秒前
deway发布了新的文献求助10
48秒前
Lucas应助Yatpome采纳,获得10
51秒前
每天都是好时光完成签到 ,获得积分10
56秒前
科研通AI5应助丁丽娜采纳,获得10
57秒前
58秒前
1分钟前
1分钟前
云那边的山完成签到,获得积分10
1分钟前
繁荣的鼠标完成签到,获得积分20
1分钟前
TCMning发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869265
求助须知:如何正确求助?哪些是违规求助? 4160342
关于积分的说明 12901400
捐赠科研通 3914967
什么是DOI,文献DOI怎么找? 2150207
邀请新用户注册赠送积分活动 1168584
关于科研通互助平台的介绍 1071172