Effect of User Decision and Environmental Factors on Computationally Derived River Networks

数字高程模型 水文学 仰角(弹道) 支流 环境科学 水文学(农业) 遥感 计算机科学 地图学 地理 地质学 工程类 岩土工程 结构工程
作者
N. R. Olsen,Ahmad A. Tavakoly,K. A. McCormack,Heather K Levin
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:128 (4) 被引量:2
标识
DOI:10.1029/2022jf006873
摘要

Abstract Despite recent developments of continental and global vector‐based river networks, the impact of digital elevation model selection, stream initiation area and environmental parameters including land cover, and elevation, remain unexplored at large scales. To fill this gap, vector river networks based on multiple data sets are compared to the National Hydrography Dataset Plus High Resolution flowpaths. Using TauDEM, river networks from three conditioned Digital Elevation Models (DEMs) were produced at multiple thresholds for stream initiation. OpenCLC, a software package for the comparison of hydrographic networks, was used to compare digital hydrographic networks with the NHDPlus HR flowlines data set over more than 35,00 basins. Networks derived from the 12 m Tandem‐X data set showed similar results as the MERIT Hydro with 90 m resolution until the application of a sophisticated stream burning methodology improved performance significantly. The optimal CLC is obtained at 1‐km threshold for Hydrological Data and Maps Based on SHuttle Elevation Derivatives at multiple Scales and MERIT Hydro‐gridded data sets, quality declined with smaller thresholds. Spatial patterns in river‐network quality were observed and were associated with dominant land classification, with greater forest coverage associated with significantly better quality and greater wetland presence with lower quality networks. This study demonstrates user selection of DEM, and threshold combined with environmental factors (vegetation, water coverage, and precipitation) play a significant role in river‐network quality compared to the DEM selection, and that without sophisticated conditioning, a higher resolution base DEM does not necessarily produce a better river network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
monster完成签到 ,获得积分10
5秒前
Stageruner完成签到,获得积分10
5秒前
胡茶茶完成签到 ,获得积分10
6秒前
pwang_lixin完成签到,获得积分10
6秒前
蓝刺完成签到,获得积分10
7秒前
小城故事完成签到,获得积分10
9秒前
你怎么睡得着觉完成签到,获得积分10
9秒前
9秒前
9秒前
蝈蝈完成签到,获得积分10
10秒前
阳佟若剑完成签到,获得积分10
10秒前
11秒前
大模型应助庾稀采纳,获得10
11秒前
勤恳的嚓茶完成签到,获得积分10
11秒前
科研王子完成签到,获得积分10
12秒前
LLL完成签到,获得积分10
13秒前
洁净斑马发布了新的文献求助10
13秒前
谦让汝燕完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
闪闪的斑马完成签到,获得积分10
16秒前
书生完成签到,获得积分10
16秒前
柳易槐完成签到,获得积分10
17秒前
pwang_ecust完成签到,获得积分10
17秒前
shuicaoxi完成签到,获得积分20
17秒前
hx完成签到 ,获得积分10
18秒前
务实时光完成签到,获得积分10
18秒前
HCCha完成签到,获得积分10
19秒前
19秒前
...完成签到 ,获得积分0
21秒前
暮晓见完成签到 ,获得积分10
21秒前
23秒前
wx发布了新的文献求助50
23秒前
Tonald Yang发布了新的文献求助10
23秒前
myg123完成签到 ,获得积分10
25秒前
Sean完成签到,获得积分10
27秒前
夏紫儿完成签到 ,获得积分10
27秒前
东方琉璃完成签到,获得积分10
28秒前
典雅的夜安完成签到,获得积分10
28秒前
KouZL完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027