Effect of User Decision and Environmental Factors on Computationally Derived River Networks

数字高程模型 水文学 仰角(弹道) 支流 环境科学 水文学(农业) 遥感 计算机科学 地图学 地理 地质学 工程类 岩土工程 结构工程
作者
N. R. Olsen,Ahmad A. Tavakoly,K. A. McCormack,Heather K Levin
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:128 (4) 被引量:2
标识
DOI:10.1029/2022jf006873
摘要

Abstract Despite recent developments of continental and global vector‐based river networks, the impact of digital elevation model selection, stream initiation area and environmental parameters including land cover, and elevation, remain unexplored at large scales. To fill this gap, vector river networks based on multiple data sets are compared to the National Hydrography Dataset Plus High Resolution flowpaths. Using TauDEM, river networks from three conditioned Digital Elevation Models (DEMs) were produced at multiple thresholds for stream initiation. OpenCLC, a software package for the comparison of hydrographic networks, was used to compare digital hydrographic networks with the NHDPlus HR flowlines data set over more than 35,00 basins. Networks derived from the 12 m Tandem‐X data set showed similar results as the MERIT Hydro with 90 m resolution until the application of a sophisticated stream burning methodology improved performance significantly. The optimal CLC is obtained at 1‐km threshold for Hydrological Data and Maps Based on SHuttle Elevation Derivatives at multiple Scales and MERIT Hydro‐gridded data sets, quality declined with smaller thresholds. Spatial patterns in river‐network quality were observed and were associated with dominant land classification, with greater forest coverage associated with significantly better quality and greater wetland presence with lower quality networks. This study demonstrates user selection of DEM, and threshold combined with environmental factors (vegetation, water coverage, and precipitation) play a significant role in river‐network quality compared to the DEM selection, and that without sophisticated conditioning, a higher resolution base DEM does not necessarily produce a better river network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swordshine完成签到,获得积分0
1秒前
D-L@rabbit完成签到 ,获得积分10
2秒前
alixy完成签到,获得积分10
6秒前
XY完成签到 ,获得积分10
8秒前
空白完成签到 ,获得积分10
9秒前
桃花源的瓶起子完成签到 ,获得积分10
10秒前
wzk完成签到,获得积分10
13秒前
PHI完成签到 ,获得积分10
14秒前
嗯嗯完成签到 ,获得积分10
14秒前
青水完成签到 ,获得积分10
14秒前
凌泉完成签到 ,获得积分10
15秒前
FF完成签到,获得积分20
15秒前
LaixS完成签到,获得积分10
16秒前
要笑cc完成签到,获得积分10
18秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
19秒前
宣宣宣0733完成签到,获得积分10
20秒前
qiaorankongling完成签到 ,获得积分10
22秒前
胡质斌完成签到,获得积分10
22秒前
耶耶完成签到,获得积分10
23秒前
天空完成签到,获得积分10
23秒前
稳重乌冬面完成签到 ,获得积分10
24秒前
濮阳灵竹完成签到,获得积分10
25秒前
buerzi完成签到,获得积分10
27秒前
猫吃蘑菇完成签到,获得积分20
29秒前
CMD完成签到 ,获得积分10
31秒前
keeptg完成签到 ,获得积分10
33秒前
婉孝完成签到,获得积分10
35秒前
徐梦曦完成签到 ,获得积分10
36秒前
整齐百褶裙完成签到 ,获得积分10
36秒前
cheong完成签到,获得积分10
38秒前
超级天磊完成签到,获得积分10
42秒前
43秒前
44秒前
乐观无心应助科研通管家采纳,获得150
46秒前
Jasper应助科研通管家采纳,获得10
46秒前
耍酷的小刺猬完成签到,获得积分10
46秒前
馆长应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
xzy998应助科研通管家采纳,获得10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188146
求助须知:如何正确求助?哪些是违规求助? 4372545
关于积分的说明 13613593
捐赠科研通 4225769
什么是DOI,文献DOI怎么找? 2317932
邀请新用户注册赠送积分活动 1316498
关于科研通互助平台的介绍 1266170