Advanced Algorithms for Low Dimensional Metal Oxides-Based Electronic Nose Application: A Review

电子鼻 人工神经网络 计算机科学 人工智能 算法 领域(数学) 卷积神经网络 钥匙(锁) 支持向量机 机器学习 模式识别(心理学) 数学 计算机安全 纯数学
作者
Xi Wang,Yangming Zhou,Zhikai Zhao,Xiujuan Feng,Zhi Wang,Mingzhi Jiao
出处
期刊:Crystals [MDPI AG]
卷期号:13 (4): 615-615 被引量:5
标识
DOI:10.3390/cryst13040615
摘要

Low-dimensional metal oxides-based electronic noses have been applied in various fields, such as food quality, environmental assessment, coal mine risk prediction, and disease diagnosis. However, the applications of these electronic noses are limited for conditions such as precise safety monitoring because electronic nose systems have problems such as poor recognition ability of mixed gas signals and sensor drift caused by environmental factors. Advanced algorithms, including classical gas recognition algorithms and neural network-based algorithms, can be good solutions for the key problems. Classical gas recognition methods, such as support vector machines, have been widely applied in electronic nose systems in the past. These methods can provide satisfactory results if the features are selected properly and the types of mixed gas are under five. In many situations, this can be challenging due to the drift of sensor signals. In recent years, neural networks have undergone revolutionary changes in the field of electronic noses, especially convolutional neural networks and recurrent neural networks. This paper reviews the principles and performances of typical gas recognition methods of the electronic nose up to now and compares and analyzes the classical gas recognition methods and the neural network-based gas recognition methods. This work can provide guidance for research in related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助kenna123采纳,获得10
1秒前
3秒前
小城楠完成签到,获得积分10
3秒前
aff完成签到,获得积分20
4秒前
4秒前
6秒前
8秒前
8秒前
aff发布了新的文献求助10
8秒前
9秒前
zou发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
崔崔发布了新的文献求助10
13秒前
13秒前
13秒前
nn发布了新的文献求助10
17秒前
wang发布了新的文献求助10
18秒前
24秒前
25秒前
26秒前
28秒前
图里琛完成签到 ,获得积分10
28秒前
28秒前
Djdidn发布了新的文献求助10
29秒前
苏以亦发布了新的文献求助10
29秒前
小月986发布了新的文献求助10
31秒前
夏侯德东完成签到,获得积分10
31秒前
CGN发布了新的文献求助50
32秒前
小二郎应助欧阳万仇采纳,获得10
33秒前
门柱帝发布了新的文献求助20
36秒前
37秒前
CGN完成签到,获得积分10
38秒前
苏以亦完成签到,获得积分20
40秒前
44秒前
47秒前
haowu发布了新的文献求助10
51秒前
52秒前
52秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228