Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review

计算机科学 康复 人工智能 动作(物理) 机器学习 人机交互 数据科学 医学 物理疗法 物理 量子力学
作者
Sara Sardari,Sara Sharifzadeh,Alireza Daneshkhah,Bahareh Nakisa,Seng W. Loke,Vasile Palade,Michael Duncan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106835-106835 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.106835
摘要

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role in regaining muscle strength and improving balance for people with different physical disabilities. However, patients attending these programs are not able to assess their action performance in the absence of a medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions for designing automatic patient's activity monitoring models. Then, improving such systems' performance to assist patients and physiotherapists has attracted wide interest of the research community. This paper provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence (AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied. Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward several suggestions for future research directions in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助Cloud采纳,获得10
1秒前
芸珂发布了新的文献求助10
2秒前
CipherSage应助幽默莞采纳,获得10
3秒前
holl发布了新的文献求助10
3秒前
悦耳的妙竹完成签到,获得积分10
5秒前
Feng5945完成签到 ,获得积分10
5秒前
梁世秀发布了新的文献求助10
6秒前
搜集达人应助xc采纳,获得10
6秒前
6秒前
脑洞疼应助书起洛阳采纳,获得10
7秒前
7秒前
Lucas应助JHL采纳,获得10
8秒前
8秒前
M二以发布了新的文献求助10
10秒前
勤劳冥发布了新的文献求助10
12秒前
烟火还是永恒完成签到,获得积分10
13秒前
xcky0917发布了新的文献求助10
14秒前
英姑应助Zhang采纳,获得30
14秒前
芸珂完成签到,获得积分10
15秒前
15秒前
无花果应助inRe采纳,获得10
17秒前
充电宝应助pathway采纳,获得10
17秒前
hajy发布了新的文献求助10
17秒前
吨吨关注了科研通微信公众号
17秒前
18秒前
愤怒的紫发布了新的文献求助10
18秒前
李爱国应助00采纳,获得10
18秒前
19秒前
19秒前
司马绮山发布了新的文献求助10
19秒前
Dopamine发布了新的文献求助10
22秒前
22秒前
禾叶完成签到 ,获得积分10
23秒前
闾丘若之发布了新的文献求助10
24秒前
24秒前
爆米花应助fengttaotao12采纳,获得10
24秒前
叮叮完成签到 ,获得积分10
25秒前
SciGPT应助文章必发采纳,获得10
25秒前
holl完成签到,获得积分10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627