Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review

计算机科学 康复 人工智能 动作(物理) 骨架(计算机编程) 机器学习 人机交互 医学 物理疗法 物理 量子力学 程序设计语言
作者
Sara Sardari,Sara Sharifzadeh,Alireza Daneshkhah,Bahareh Nakisa,Seng W. Loke,Vasile Palade,Michael Duncan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106835-106835 被引量:57
标识
DOI:10.1016/j.compbiomed.2023.106835
摘要

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role in regaining muscle strength and improving balance for people with different physical disabilities. However, patients attending these programs are not able to assess their action performance in the absence of a medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions for designing automatic patient's activity monitoring models. Then, improving such systems' performance to assist patients and physiotherapists has attracted wide interest of the research community. This paper provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence (AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied. Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward several suggestions for future research directions in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助susie采纳,获得10
1秒前
Pluto完成签到,获得积分10
1秒前
2秒前
嘻嘻发布了新的文献求助30
2秒前
2秒前
隐形曼青应助77采纳,获得10
2秒前
2秒前
李爱国应助无情的依柔采纳,获得10
2秒前
lhy发布了新的文献求助10
3秒前
Holiday发布了新的文献求助10
3秒前
3秒前
聪慧的怀绿完成签到,获得积分10
4秒前
whale完成签到,获得积分10
4秒前
传奇3应助df采纳,获得10
5秒前
ye发布了新的文献求助10
5秒前
Cookiee完成签到 ,获得积分10
5秒前
大蛋发布了新的文献求助10
6秒前
6秒前
6秒前
善学以致用应助缥缈冰之采纳,获得10
7秒前
Hanh完成签到,获得积分10
7秒前
xiaoyuzi发布了新的文献求助30
7秒前
夏天发布了新的文献求助10
8秒前
SIC1完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
从容的远望完成签到,获得积分10
9秒前
allenice完成签到,获得积分0
10秒前
11秒前
11秒前
lhy完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
无私的皮卡丘完成签到,获得积分20
15秒前
lit完成签到,获得积分10
17秒前
科研通AI6.1应助夏天采纳,获得10
17秒前
Nostalgia完成签到,获得积分10
17秒前
77发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851