Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review

计算机科学 康复 人工智能 动作(物理) 机器学习 人机交互 数据科学 医学 物理疗法 物理 量子力学
作者
Sara Sardari,Sara Sharifzadeh,Alireza Daneshkhah,Bahareh Nakisa,Seng W. Loke,Vasile Palade,Michael Duncan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106835-106835 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.106835
摘要

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role in regaining muscle strength and improving balance for people with different physical disabilities. However, patients attending these programs are not able to assess their action performance in the absence of a medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions for designing automatic patient's activity monitoring models. Then, improving such systems' performance to assist patients and physiotherapists has attracted wide interest of the research community. This paper provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence (AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied. Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward several suggestions for future research directions in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助Shinka采纳,获得10
1秒前
Hellodude发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
箫笛完成签到 ,获得积分10
3秒前
3秒前
222333发布了新的文献求助10
5秒前
咚咚咚发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助50
7秒前
hush发布了新的文献求助10
7秒前
rorraine_xu完成签到,获得积分10
8秒前
8秒前
鳗鱼煜祺发布了新的文献求助10
8秒前
8秒前
欧阳完成签到,获得积分10
8秒前
情怀应助jou采纳,获得10
9秒前
kw完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
晴天完成签到,获得积分20
10秒前
11秒前
曹萍完成签到,获得积分20
11秒前
小马甲应助hush采纳,获得10
11秒前
12秒前
NexusExplorer应助liuguyue采纳,获得10
12秒前
小马甲应助蚝仔烙蚝仔采纳,获得10
12秒前
12秒前
所所应助T_KYG采纳,获得10
13秒前
13秒前
小羊完成签到,获得积分10
13秒前
14秒前
14秒前
呼大人发布了新的文献求助10
14秒前
蔡莹完成签到 ,获得积分10
15秒前
凌泉完成签到 ,获得积分10
15秒前
hush完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960247
求助须知:如何正确求助?哪些是违规求助? 4220767
关于积分的说明 13144216
捐赠科研通 4004605
什么是DOI,文献DOI怎么找? 2191552
邀请新用户注册赠送积分活动 1205753
关于科研通互助平台的介绍 1116915