Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier

万物有灵性 400奈米 名词 计算机科学 人工智能 自然语言处理 分类器(UML) 数字系统 背景(考古学) 理解力 相似性(几何) 脑电图 心理学 认知心理学 事件相关电位 图像(数学) 精神科 古生物学 生物 程序设计语言
作者
Zirui Huang,Feng Chen,Qingqing Qu
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (13): 8312-8320 被引量:1
标识
DOI:10.1093/cercor/bhad116
摘要

Existing studies demonstrate that comprehenders can predict semantic information during language comprehension. Most evidence comes from a highly constraining context, in which a specific word is likely to be predicted. One question that has been investigated less is whether prediction can occur when prior context is less constraining for predicting specific words. Here, we aim to address this issue by examining the prediction of animacy features in low-constraining context, using electroencephalography (EEG), in combination with representational similarity analysis (RSA). In Chinese, a classifier follows a numeral and precedes a noun, and classifiers constrain animacy features of upcoming nouns. In the task, native Chinese Mandarin speakers were presented with either animate-constraining or inanimate-constraining classifiers followed by congruent or incongruent nouns. EEG amplitude analysis revealed an N400 effect for incongruent conditions, reflecting the difficulty of semantic integration when an incompatible noun is encountered. Critically, we quantified the similarity between patterns of neural activity following the classifiers. RSA results revealed that the similarity between patterns of neural activity following animate-constraining classifiers was greater than following inanimate-constraining classifiers, before the presentation of the nouns, reflecting pre-activation of animacy features of nouns. These findings provide evidence for the prediction of coarse-grained semantic feature of upcoming words.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林佳一完成签到,获得积分10
刚刚
城南烤地瓜完成签到 ,获得积分10
刚刚
1秒前
等等完成签到 ,获得积分10
3秒前
wanci应助mzc采纳,获得10
3秒前
一条咸鱼发布了新的文献求助10
3秒前
5秒前
某只兔子完成签到,获得积分10
6秒前
大模型应助一条咸鱼采纳,获得10
7秒前
行路人发布了新的文献求助20
7秒前
阿航完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
9秒前
科研通AI5应助科研混子采纳,获得10
10秒前
英俊的铭应助欧阳正义采纳,获得10
11秒前
11秒前
Chris发布了新的文献求助10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
柯一一应助科研通管家采纳,获得10
12秒前
12秒前
Orange应助科研通管家采纳,获得10
12秒前
mmyhn应助科研通管家采纳,获得20
13秒前
iNk应助科研通管家采纳,获得20
13秒前
Liufgui应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
Liufgui应助科研通管家采纳,获得10
13秒前
ccc发布了新的文献求助10
13秒前
酷波er应助积极的夜香采纳,获得80
13秒前
Liufgui应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
霸气的猎豹完成签到,获得积分10
15秒前
牛牛完成签到,获得积分10
15秒前
小奕应助甝虪采纳,获得20
15秒前
从容的柜子完成签到,获得积分10
16秒前
牛牛发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498