已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU

列线图 逻辑回归 医学 接收机工作特性 急诊医学 机器学习 计算机科学 内科学
作者
Wanqiu Xie,Yue Li,Xianglin Meng,Mingyan Zhao
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:174: 105049-105049 被引量:13
标识
DOI:10.1016/j.ijmedinf.2023.105049
摘要

To establish a prediction model and assess the risk factors for severe diabetic ketoacidosis (DKA) in adult patients during the ICU.With DKA hospitalization rates consistently increasing, in-hospital mortality has become a growing concern.DKA patients aged >18 years old in the US-based critical care database (Medical Information Mart for Intensive Care (MIMIC-IV)) were considered. Independent risk factors for in-hospital mortality were screened using extreme gradient boosting (XGBoost) and the Bayesian information criterion (BIC) optimal subset regression. One predictive model was developed using machine learning extreme gradient boosting (XGBoost), and the other one was a nomogram based on logistic regression to estimate risks of in-hospital mortality with severe DKA. Established models were assessed by using internal validation and external validation. The MIMIC-IV was split into training and testing samples in a 7:3 ratio. The eICU Collaborative Research Database and admissions data from the department of critical care medicine of the first affiliated hospital of Harbin medical university were used for independent validation. The discriminatory ability of the model was determined by illustrating a receiver operating curve (ROC) and calculating the C-index. Meanwhile, the calibration plot and Hosmer-Lemeshow goodness-of-fit test (HL test) was conducted to evaluate the performance of our new build model. Decision curve analysis (DCA) was performed to assess the clinical net benefit. Net Reclassification Improvement (NRI) was used to compare the predictive power of the two models.A multivariable model that included acute physiology score III (APS III), the highest levels of blood plasma osmolality (osmolarity_max), minimum osmolarity (osmolarity_min)/osmolarity _max, vasopressor, and the highest levels of blood lactate was represented as the nomogram. The C- index of the nomogram model was 0.915 (95% CI: 0.966-0.864) in the training dataset and 0.971 (95% CI: 0.992-0.950) in the internal validation. The nomogram's sensitivity was well according to all data's HL test (P > 0.05). DCA showed that our model was clinically valuable. The XGB (extreme gradient boosting) model achieved an AUC (area under the curve) of 0.950 (95% CI, 0.920-0.980); however, the nomogram model made was more effective than XGB based on NRI.The predictive XGB and nomogram models for predicting in-hospital patient deaths with DKA were effective. The forecast models can help clinical physicians promptly identify patients at high risk of DKA, prevent in-hospital deaths, and promptly intervene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷锋发布了新的文献求助10
5秒前
7秒前
zho发布了新的文献求助10
8秒前
Zn发布了新的文献求助10
11秒前
16秒前
yyw完成签到,获得积分10
19秒前
21秒前
赘婿应助111采纳,获得10
22秒前
田様应助小红采纳,获得10
23秒前
23秒前
Cassiel发布了新的文献求助50
23秒前
小蘑菇应助Andema采纳,获得10
24秒前
清修发布了新的文献求助10
27秒前
28秒前
Betty完成签到 ,获得积分10
32秒前
北媛完成签到,获得积分10
36秒前
TongMan完成签到,获得积分20
40秒前
43秒前
万能图书馆应助MOMO采纳,获得10
46秒前
迟大猫应助研妍采纳,获得10
48秒前
Zn发布了新的文献求助10
49秒前
52秒前
52秒前
52秒前
52秒前
54秒前
科研通AI5应助yss采纳,获得10
55秒前
Andema发布了新的文献求助10
56秒前
56秒前
57秒前
Cassiel发布了新的文献求助30
57秒前
111发布了新的文献求助10
1分钟前
MOMO发布了新的文献求助10
1分钟前
科研通AI5应助zLin采纳,获得10
1分钟前
1分钟前
Andema完成签到,获得积分10
1分钟前
平淡的雁开完成签到 ,获得积分10
1分钟前
1分钟前
文献无碍发布了新的文献求助30
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526307
求助须知:如何正确求助?哪些是违规求助? 3106719
关于积分的说明 9281335
捐赠科研通 2804220
什么是DOI,文献DOI怎么找? 1539384
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515