轮盘赌
操作员(生物学)
适应(眼睛)
数学优化
强化学习
选择(遗传算法)
计算机科学
元启发式
适应度比例选择
人工智能
算法
数学
机器学习
遗传算法
心理学
生物化学
化学
几何学
抑制因子
神经科学
转录因子
适应度函数
基因
作者
Hajar Boualamia,Metrane Abdelmoutalib,Imad Hafidi,Oumaima Mellouli
出处
期刊:Lecture notes in networks and systems
日期:2023-01-01
卷期号:: 3-14
标识
DOI:10.1007/978-3-031-29313-9_1
摘要
Adaptive Large Neighborhood Search (ALNS) is used to solve NP-hard practical problems. Selecting operators and changing parameters to match a specific purpose is a difficult aspect of metaheuristic design. Our proposal concerns ALNS operator selection. Classical ALNS uses “roulette wheel selection” (RWS) to pick operators during the search phase. Choosing operators with RWS is a big challenge because an operator will almost always take the best spot in the roulette, whereas evolutionary algorithms require a balance between exploration and exploitation. We provide an improved ALNS metaheuristic for the capacitated vehicle routing problem (CVRP) that balances exploration and exploitation. The suggested strategy favors the most successful operators using reinforcement learning, notably the Q-learning algorithm. The experimental study shows that the suggested approach works well and is comparable to the classic ALNS.
科研通智能强力驱动
Strongly Powered by AbleSci AI