Learning defense transformations for counterattacking adversarial examples

对抗制 计算机科学 仿射变换 稳健性(进化) 一般化 人工智能 深层神经网络 透视图(图形) 理论计算机科学 人工神经网络 机器学习 数学 数学分析 生物化学 化学 纯数学 基因
作者
Jincheng Li,Shuhai Zhang,Jiezhang Cao,Mingkui Tan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:164: 177-185
标识
DOI:10.1016/j.neunet.2023.03.008
摘要

Deep neural networks (DNNs) are vulnerable to adversarial examples with small perturbations. Adversarial defense thus has been an important means which improves the robustness of DNNs by defending against adversarial examples. Existing defense methods focus on some specific types of adversarial examples and may fail to defend well in real-world applications. In practice, we may face many types of attacks where the exact type of adversarial examples in real-world applications can be even unknown. In this paper, motivated by that adversarial examples are more likely to appear near the classification boundary and are vulnerable to some transformations, we study adversarial examples from a new perspective that whether we can defend against adversarial examples by pulling them back to the original clean distribution. We empirically verify the existence of defense affine transformations that restore adversarial examples. Relying on this, we learn defense transformations to counterattack the adversarial examples by parameterizing the affine transformations and exploiting the boundary information of DNNs. Extensive experiments on both toy and real-world data sets demonstrate the effectiveness and generalization of our defense method. The code is avaliable at https://github.com/SCUTjinchengli/DefenseTransformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
3秒前
Ava应助研友_8RyzBZ采纳,获得10
4秒前
淡定乐天发布了新的文献求助200
5秒前
奇异物质发布了新的文献求助10
6秒前
生动觅翠完成签到,获得积分10
6秒前
6秒前
6秒前
洒松雪发布了新的文献求助30
7秒前
YaoHui发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
yuanjingnan发布了新的文献求助10
10秒前
李健应助哈哈嘿采纳,获得10
10秒前
10秒前
11秒前
陆柒子完成签到,获得积分10
11秒前
11秒前
CipherSage应助莫逆采纳,获得10
12秒前
12秒前
13秒前
cherish发布了新的文献求助10
13秒前
13秒前
灌水大王发布了新的文献求助10
14秒前
15秒前
Kam发布了新的文献求助10
15秒前
dqq发布了新的文献求助10
17秒前
17秒前
17秒前
Rubby应助qiang采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
yuanjingnan完成签到,获得积分10
18秒前
MMMMM完成签到,获得积分10
18秒前
20秒前
完美世界应助无私的以云采纳,获得10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821