Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model

医学 接收机工作特性 放射科 随机森林 甲状腺癌 颈淋巴结 无线电技术 逻辑回归 淋巴结 转移 甲状腺癌 人工智能 癌症 甲状腺 病理 计算机科学 内科学
作者
Junze Du,Xinyun He,Rui Fan,Yi Zhang,Hao Liu,Haoxi Liu,Shangqing Liu,Shichao Li
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002267
摘要

Objectives: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providing a new noninvasive and accurate diagnostic tool for PTC patients with LCLNM. Methods: This retrospective study included 389 confirmed PTC patients, randomly divided into a training set ( n = 272) and an internal validation set ( n = 117), with an additional 40 patients from another hospital as an external validation set. Patient demographics were evaluated to establish a clinical model. Radiomic features were extracted from preoperative contrast-enhanced CT images (venous phase) for each patient. Feature selection was performed using analysis of variance and the least absolute shrinkage and selection operator algorithm. We employed support vector machine, random forest (RF), logistic regression, and XGBoost algorithms to build CT radiomic models for predicting LCLNM. A radiomics score (Rad-score) was calculated using a radiomic signature-based formula. A combined clinical-radiomic model was then developed. The performance of the combined model was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: A total of 1724 radiomic features were extracted from each patient’s CT images, with 13 features selected based on nonzero coefficients related to LCLNM. Four clinically relevant factors (age, tumor location, thyroid capsule invasion, and central cervical lymph node metastasis) were significantly associated with LCLNM. Among the algorithms tested, the RF algorithm outperformed the others with five-fold cross-validation on the training set. After integrating the best algorithm with clinical factors, the areas under the ROC curves for the training, internal validation, and external validation sets were 0.910 (95% confidence interval [CI]: 0.729–0.851), 0.876 (95% CI: 0.747–0.911), and 0.821 (95% CI: 0.555–0.802), respectively, with DCA demonstrating the clinical utility of the combined radiomic model. Conclusions: This study successfully established a clinical-CT radiomic combined model for predicting LCLNM, which may significantly enhance surgical decision-making for lateral cervical lymph node dissection in patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Hammerdai采纳,获得10
刚刚
1秒前
1秒前
gzy完成签到,获得积分20
2秒前
LYZ发布了新的文献求助10
2秒前
3秒前
慕青应助kiseki采纳,获得30
3秒前
lby完成签到 ,获得积分10
4秒前
GZM关闭了GZM文献求助
5秒前
gzy发布了新的文献求助10
6秒前
阿利呀发布了新的文献求助20
6秒前
7秒前
田様应助SB采纳,获得10
7秒前
CipherSage应助D.Z采纳,获得10
7秒前
爱科研爱生活完成签到,获得积分10
8秒前
qinhan完成签到 ,获得积分10
8秒前
刚得力完成签到,获得积分10
9秒前
小垃圾一枚完成签到,获得积分10
9秒前
9秒前
无名老大应助Pp采纳,获得20
9秒前
Abner完成签到,获得积分10
10秒前
10秒前
Lucas应助Green采纳,获得10
11秒前
paomian完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
Fishball发布了新的文献求助10
13秒前
天狼星高高的芦丁完成签到,获得积分10
14秒前
琮博完成签到,获得积分10
14秒前
14秒前
15秒前
paomian发布了新的文献求助30
16秒前
传奇3应助kerio采纳,获得10
16秒前
wjx发布了新的文献求助10
16秒前
AW139发布了新的文献求助10
16秒前
JIU夭发布了新的文献求助10
17秒前
Shaun2完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390769
求助须知:如何正确求助?哪些是违规求助? 3002173
关于积分的说明 8802231
捐赠科研通 2688779
什么是DOI,文献DOI怎么找? 1472739
科研通“疑难数据库(出版商)”最低求助积分说明 681152
邀请新用户注册赠送积分活动 673901