Enhanced Conductivity of Multilayer Copper–Carbon Nanofilms via Plasma Immersion Deposition

电导率 材料科学 电阻率和电导率 碳纤维 复合数 电极 复合材料 纳米技术 冶金 化学 电气工程 工程类 物理化学
作者
Haotian Weng,X. B. Zhang,Xuan Liu,Yunhui Tang,Hewei Yuan,Xu Yang,Kun Li,Xiaolu Huang
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:17 (1)
标识
DOI:10.1007/s40820-024-01628-6
摘要

Abstract Although room-temperature superconductivity is still difficult to achieve, researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency, reducing costs, lightening equipment weight, and enhancing overall performance. Herein, this study presents a novel copper–carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment. Multilayer copper–carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology, effectively enhancing conductivity. Experimental results show that for a five-layer copper–carbon nanofilm composite, the conductivity improves significantly when the thickness of the carbon nanofilm increases. When the carbon nanofilm accounts for 16% of the total thickness, the overall conductivity increases up to 30.20% compared to pure copper. The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory, first-principles calculations and density of states analysis. Under an applied electric field, the high-density electrons in the copper film can migrate into the nanocarbon film, forming highly efficient electron transport channels, which significantly enhance the material’s conductivity. Finally, large-area electrode coating equipment is developed based on this study, providing the novel and robust strategy to enhance the conductivity of copper materials, which enables industrial application of copper–carbon nanocomposite films in the field of high conductivity materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
香蕉觅云应助南枝采纳,获得10
3秒前
3秒前
陈末应助梦霖采纳,获得10
4秒前
俊杰发布了新的文献求助10
4秒前
逍遥游发布了新的文献求助10
6秒前
6秒前
小火车EL完成签到,获得积分10
7秒前
JIASHOUSHOU完成签到,获得积分10
8秒前
8秒前
我是老大应助干净冰露采纳,获得10
8秒前
北地风情应助皮卡丘采纳,获得20
8秒前
Haoziyu发布了新的文献求助30
9秒前
FG关闭了FG文献求助
10秒前
孙伟健发布了新的文献求助10
10秒前
刘富宇完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
单身的青柏完成签到 ,获得积分10
12秒前
annathd发布了新的文献求助10
12秒前
平常心发布了新的文献求助10
12秒前
13秒前
Wind发布了新的文献求助10
13秒前
端庄梦桃完成签到,获得积分10
14秒前
NexusExplorer应助Clover04采纳,获得10
14秒前
15秒前
nc发布了新的文献求助10
15秒前
所所应助111111采纳,获得10
15秒前
华仔应助ruirui采纳,获得30
15秒前
Haoziyu完成签到,获得积分20
16秒前
难过若枫完成签到,获得积分10
16秒前
南枝发布了新的文献求助10
16秒前
悦耳寒云完成签到,获得积分10
17秒前
18秒前
专注月亮发布了新的文献求助10
21秒前
21秒前
难过若枫发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568