已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Evaluation of a Deep Learning–Based Pulmonary Hypertension Screening Algorithm Using a Digital Stethoscope

医学 听诊器 肺动脉 肺动脉高压 心脏病学 深度学习 内科学 血压 卷积神经网络 光谱图 接收机工作特性 算法 人工智能 放射科 计算机科学
作者
Ling Guo,Nivedita Khobragade,Spencer Kieu,Suleman Ilyas,Preston N. Nicely,Emmanuel K. Asiedu,Fabio V. Lima,Caroline Currie,Emileigh Lastowski,Gaurav Choudhary
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:14 (3)
标识
DOI:10.1161/jaha.124.036882
摘要

Despite the poor outcomes related to the presence of pulmonary hypertension, it often goes undiagnosed in part because of low suspicion and screening tools not being easily accessible such as echocardiography. A new readily available screening tool to identify elevated pulmonary artery systolic pressures is needed to help with the prognosis and timely treatment of underlying causes such as heart failure or pulmonary vascular remodeling. We developed a deep learning-based method that uses phonocardiograms (PCGs) for the detection of elevated pulmonary artery systolic pressure, an indicator of pulmonary hypertension. Approximately 6000 PCG recordings with the corresponding echocardiogram-based estimated pulmonary artery systolic pressure values, as well as ≈169 000 PCG recordings without associated echocardiograms, were used for training a deep convolutional network to detect pulmonary artery systolic pressures ≥40 mm Hg in a semisupervised manner. Each 15-second PCG, recorded using a digital stethoscope, was processed to generate 5-second mel-spectrograms. An additional labeled data set of 196 patients was used for testing. GradCAM++ was used to visualize high importance segments contributing to the network decision. An average area under the receiver operator characteristic curve of 0.79 was obtained across 5 cross-validation folds. The testing data set gave a sensitivity of 0.71 and a specificity of 0.73, with pulmonic and left subclavicular locations having higher sensitivities. GradCAM++ technique highlighted physiologically meaningful PCG segments in example pulmonary hypertension recordings. We demonstrated the feasibility of using digital stethoscopes in conjunction with deep learning algorithms as a low-cost, noninvasive, and easily accessible screening tool for early detection of pulmonary hypertension.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynette8888发布了新的文献求助10
刚刚
十三完成签到 ,获得积分10
1秒前
something完成签到,获得积分10
2秒前
yuanyuan发布了新的文献求助10
2秒前
李小强完成签到,获得积分10
5秒前
NicoLi应助demo采纳,获得30
5秒前
hajy发布了新的文献求助10
5秒前
宇智波白哉完成签到,获得积分10
6秒前
chenshaj关注了科研通微信公众号
8秒前
妖妖完成签到 ,获得积分10
9秒前
无花果应助PPP采纳,获得20
9秒前
10秒前
13秒前
13秒前
Ava应助胖Q采纳,获得10
15秒前
科研通AI5应助yuanyuan采纳,获得10
15秒前
心灵美的菠萝完成签到,获得积分10
15秒前
jinyu发布了新的文献求助10
16秒前
ZZzz发布了新的文献求助10
17秒前
赘婿应助HHH采纳,获得10
17秒前
skier发布了新的文献求助10
19秒前
wxfaixx完成签到,获得积分10
19秒前
21秒前
22秒前
22秒前
yuanyuan完成签到,获得积分20
23秒前
23秒前
菜大鸭发布了新的文献求助10
26秒前
PPP发布了新的文献求助20
28秒前
28秒前
29秒前
大意的绿蓉完成签到,获得积分10
29秒前
Leuk1发布了新的文献求助10
30秒前
33秒前
33秒前
费老三发布了新的文献求助10
35秒前
zyj123发布了新的文献求助10
35秒前
汉堡包应助李昕123采纳,获得10
35秒前
123发布了新的文献求助10
35秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555465
求助须知:如何正确求助?哪些是违规求助? 3131139
关于积分的说明 9390129
捐赠科研通 2830651
什么是DOI,文献DOI怎么找? 1556139
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715768