Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system

计算机科学 水准点(测量) 调制(音乐) 人工智能 模式识别(心理学) 特征提取 噪音(视频) 算法 信号(编程语言) 特征(语言学) 卷积神经网络 哲学 语言学 大地测量学 图像(数学) 程序设计语言 地理 美学
作者
Ting Xie,Xing Han
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (1): e0317355-e0317355
标识
DOI:10.1371/journal.pone.0317355
摘要

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network’s accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔难破完成签到,获得积分10
1秒前
Yuanyuan完成签到,获得积分10
4秒前
充电宝应助tw1999采纳,获得10
5秒前
5秒前
5秒前
轶群发布了新的文献求助10
5秒前
T_MC郭发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
Yuanyuan发布了新的文献求助10
8秒前
慕青应助zyfqpc采纳,获得10
8秒前
WYY发布了新的文献求助10
9秒前
复杂蚂蚁完成签到,获得积分20
12秒前
越越完成签到,获得积分0
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
leiyang49应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得50
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
14秒前
LuoYixiang发布了新的文献求助10
15秒前
15秒前
lanana完成签到,获得积分10
17秒前
鹿子默发布了新的文献求助30
17秒前
shandi完成签到,获得积分10
18秒前
SciGPT应助越越采纳,获得10
18秒前
南枝完成签到 ,获得积分10
18秒前
节节高发布了新的文献求助10
19秒前
Angelie发布了新的文献求助10
20秒前
杳鸢应助小芋头采纳,获得30
21秒前
大模型应助aniu采纳,获得10
23秒前
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 990
Field Guide to Insects of South Africa 660
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3395935
求助须知:如何正确求助?哪些是违规求助? 3005952
关于积分的说明 8818826
捐赠科研通 2692863
什么是DOI,文献DOI怎么找? 1474967
科研通“疑难数据库(出版商)”最低求助积分说明 682344
邀请新用户注册赠送积分活动 675447