清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High Precision Defect Sizing Method for Capacitive Imaging Based on Physics-Informed Neural Network

尺寸 无损检测 电容感应 人工神经网络 材料科学 有限元法 灵敏度(控制系统) 电子工程 计算机科学 人工智能 工程类 结构工程 电气工程 物理 艺术 视觉艺术 量子力学
作者
Guojun Fan,Xiaokang Yin,M. Zhao,Martin Mwelango,Xin’an Yuan,Wei Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tii.2024.3523588
摘要

Nonconductive materials are extensively used in industrial applications, particularly as coatings for metal structures like oil pipelines. However, these nonmetallic coatings are prone to damage from factors, such as corrosion and scratches, leading to widespread failures. This increases the demand for nondestructive evaluation techniques capable of accurately quantifying defect parameters in such materials. Capacitive Imaging (CI) technique is an emerging electromagnetic nondestructive testing method with promising application prospects in defect evaluation in nonconducting materials. However, the CI technique is commonly used as a screening technique to detect the presence of possible defects, and its defect sizing ability, which is crucial in some engineering applications, has yet to be explored. This article proposes a high precision defect sizing method for the CI technique based on a physics informed neural network. First, the physical model of the CI technique for the detection of defects in nonconducting material is analyzed. A physical formula, which was later used as physical information, for the quantification of defect length and width was then obtained. Finite-element simulations were then conducted to visualize the sensitivity distribution of the CI sensor and analyze the characteristics of defect signals the physical information was integrated into a neural network, enabling it to quantify defect parameters from the CI detection data. Experimental results demonstrate that this method can accurately determine defect length, width, depth, and buried depth. Compared to other neural network structures and traditional algorithms, the proposed approach achieves superior precision in defect quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eterny完成签到,获得积分10
1秒前
Yolenders完成签到 ,获得积分10
1秒前
wanci应助blm采纳,获得10
26秒前
万能图书馆应助明理糖豆采纳,获得10
33秒前
mito完成签到,获得积分10
48秒前
清秀的怀蕊完成签到 ,获得积分0
48秒前
周周应助ttimmy采纳,获得20
53秒前
别发呆快学习完成签到,获得积分10
56秒前
白嫖论文完成签到 ,获得积分10
57秒前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
尊敬秋双完成签到 ,获得积分10
1分钟前
秋夜临完成签到,获得积分10
1分钟前
oaoalaa完成签到 ,获得积分10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
丹妮完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
明理糖豆发布了新的文献求助10
2分钟前
Lanyiyang发布了新的文献求助10
2分钟前
kkk完成签到 ,获得积分10
2分钟前
川藏客完成签到 ,获得积分10
2分钟前
Lanyiyang完成签到,获得积分10
2分钟前
名金学南完成签到,获得积分10
3分钟前
兔葵燕麦完成签到 ,获得积分10
3分钟前
yxdjzwx完成签到,获得积分10
3分钟前
ww完成签到,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
丘比特应助xiazixiaojie采纳,获得10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
四叶草完成签到 ,获得积分10
3分钟前
科研通AI5应助自觉的草丛采纳,获得10
4分钟前
科研通AI5应助悦耳十三采纳,获得10
4分钟前
4分钟前
潘继坤完成签到 ,获得积分10
4分钟前
li8888lili8888完成签到 ,获得积分10
4分钟前
4分钟前
淡然藏花完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585698
求助须知:如何正确求助?哪些是违规求助? 3154427
关于积分的说明 9501746
捐赠科研通 2857249
什么是DOI,文献DOI怎么找? 1570381
邀请新用户注册赠送积分活动 736186
科研通“疑难数据库(出版商)”最低求助积分说明 721563