法拉第效率
电解质
介电谱
锂(药物)
X射线光电子能谱
阳极
化学工程
电化学
化学
扫描电子显微镜
材料科学
电极
复合材料
医学
物理化学
工程类
内分泌学
作者
Elizabeth Zhang,Yuelang Chen,John Holoubek,Zhiao Yu,Wenbo Zhang,Hao Lyu,Il Rok Choi,Sang Cheol Kim,Chad Serrao,Yi Cui,Zhenan Bao
标识
DOI:10.1073/pnas.2418623122
摘要
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone. High coulombic efficiency and stable long-term cycling in Li||Cu half cells can be achieved with F2DEM even under fast Li metal plating conditions. The performance of F2DEM is further compared with diethoxymethane (DEM) and 2-[2-(2,2-difluoroethoxy)ethoxy]-1,1,1-trifluoroethane (F5DEE). A significantly lower overpotential is observed with F2DEM, which improves energy efficiency and enables its application in high-rate conditions. Comparative studies of F2DEM with DEM and F5DEE in anode-free lithium iron phosphate (LiFePO 4 ) LFP pouch cells and high-loading LFP coin cells further show improved capacity retention of F2DEM electrolyte, demonstrating its practical applicability. More importantly, we also extensively investigate the underlying mechanism for the superior performance of F2DEM through various techniques, including X-ray photoelectron spectroscopy, scanning electron microscopy, cryogenic electron microscopy, focused ion beam, electrochemical impedance spectroscopy, and titration gas chromatography. Overall, F2DEM facilitates improved Li deposition morphology with reduced amount of dead Li. This enables F2DEM to show superior performance, especially under higher charging and slower discharging rate conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI